Total Maximum Daily Load Assessment
Big Dry Creek – COSPBD01, Broomfield, Jefferson, Adams, and Weld Counties, Colorado
EXECUTIVE SUMMARY .. 4
1.0 Introduction .. 7
 1.1 Land Use .. 8
 1.2 Discharge Permits and Property Ownership .. 13
 1.3 Hydrologic Influence .. 14
2.0 Water Quality Standards ... 15
 2.1 Beneficial Uses .. 16
 2.2 Recreation Use .. 17
 2.3 E. Coli Water Quality Standard .. 17
3.0 Problem Identification ... 18
4.0 Water Quality Goal and Target .. 18
5.0 Instream Conditions ... 18
 5.1 Hydrology and Climate .. 19
 5.2 Ambient Water Quality .. 23
6.0 Technical Analysis .. 26
 6.1 Load Duration Curve ... 26
 6.2 Loading Assessment ... 29
7.0 Analysis of Pollutant Sources ... 31
 7.1 Tributaries and Non-Point E. coli Sources .. 31
 7.2 CDPS Process Water Permits ... 31
 7.2.1 Broomfield WWTF ... 32
 7.2.2 Westminster WWTF ... 32
 7.2.3 Northglenn WWTF ... 33
 7.2.4 Municipal Separate Storm Sewer System (MS4) Permits 33
 7.3 Other Sources ... 35
8.0 TMDL Allocation ... 36
 8.1 Waste Load Allocation .. 38
 8.2 Reserve Capacity ... 40
 8.3 Load Allocation ... 40
 8.4 Margin of Safety ... 40
 8.5 Examples of Load Reductions .. 41
9.0 Implementation ... 43
 9.1 Recommended Actions .. 44
 9.2 Post-Implementation Monitoring .. 44
 9.3 TMDL Endpoint .. 44
10.0 Public Involvement ... 45
11.0 References .. 45
APPENDIX A ... 48
 A.1 Routine Instream Monitoring Data ... 48
EXECUTIVE SUMMARY

Information fundamental to Big Dry Creek TMDL development is summarized in Table 1. The results of TMDL development are provided in Table 2-4.

Table 1. TMDL Development Summary

<table>
<thead>
<tr>
<th>TMDL Impairment Information/Methodology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody ID</td>
<td>COSPBD01</td>
</tr>
<tr>
<td>Segment Description</td>
<td>Mainstem of Big Dry Creek, including all tributaries, lakes, reservoirs and wetlands, from the source to the confluence with the South Platte River, except for specific listing in Segment 2, 3, 4a, 4b, 5 and 6.</td>
</tr>
<tr>
<td>Pollutants Addressed</td>
<td>Escherichia coli (E. coli)</td>
</tr>
<tr>
<td>Description of Segment 1 Reaches</td>
<td>Upper Reach: lake/reservoir outlet to sample location BDC 1.5 Middle Reach: BDC 1.5 to 152nd Avenue Lower Reach: 152nd Avenue to confluence with South Platte River</td>
</tr>
<tr>
<td>Assessment Locations (Critical conditions)</td>
<td>Upper Reach: BDC 1.5 (downstream of 120th Ave.) Middle Reach: BDC 2.0 (Upstream of 128th Ave., 0.5 miles West of Huron, downstream of Broomfield WWTP discharge) Lower Reach: BDC 6.0 (Upstream from bridge on Weld County Road 8, Near Wattenberg & Weld County Rd 23)</td>
</tr>
<tr>
<td>Designated Uses and Impairment Status for E. coli</td>
<td>Agriculture Not Impaired Aquatic Life Warm 2 Not Impaired Recreation P Impaired</td>
</tr>
<tr>
<td>HUC12</td>
<td>101900030406 (Upper Big Dry Creek), 101900030407 (Middle Big Dry Creek), 101900030408 (Lower Big Dry Creek)</td>
</tr>
<tr>
<td>Size of Watershed</td>
<td>Approximately 108 square miles, drains to the South Platte River</td>
</tr>
<tr>
<td>Land use</td>
<td>Mixture of developed urban, ranch/rural and open space/river corridor.</td>
</tr>
<tr>
<td>Source Identification</td>
<td>Permitted (municipal wastewater and MS4) and non-point sources (wildlife)</td>
</tr>
<tr>
<td>Water Quality Goal</td>
<td>Protection of designated public health and recreational uses</td>
</tr>
<tr>
<td>Water Quality Target</td>
<td>Attainment of E. coli water quality standard (205 cfu/100 mL) throughout segment.</td>
</tr>
<tr>
<td>Analysis/Methodology</td>
<td>Load Duration Curves were used to determine loading for varying flow regimes.</td>
</tr>
<tr>
<td>Load Duration Curve</td>
<td>A duration curve is a cumulative frequency graph that represents the percentage of time during which the value of a given parameter is equaled or exceeded. Load duration curves are developed from flow duration curves and can illustrate existing water quality conditions (as represented by loads calculated from monitoring data), how these conditions compare to desired targets, and the portion of the water body flow regime represented by these existing loads. Load duration curves were used to determine the load reductions required to meet the target maximum concentrations for E. coli.</td>
</tr>
<tr>
<td>TMDL Impairment Information/Methodology</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Critical Conditions</td>
<td>The stream flow data period of record (2000-2014) represent a range of hydrologic and meteorological flow conditions for the flow duration curve. Flow estimates were determined based on nearby stream gaging stations USGS 06720820 Big Dry Creek at Westminster, CO and USGS 06720990 Big Dry Creek at mouth near Ft Lupton, CO. The entire water quality data period of record extends over 14 years, and determined 2002 to be an anomalous year, and the critical period was defined as (2003-2014).</td>
</tr>
<tr>
<td>Seasonal Variation</td>
<td>Load duration calculations are based on varying flow conditions, using several years of flow data, to ensure the TMDL accounts for seasonal variation in the stream.</td>
</tr>
<tr>
<td>Margin of Safety (MOS)</td>
<td>A 10% explicit margin of safety was included in this TMDL. Implicit conservative assumptions were also used, such as using the sampling location with the highest rate of impairment to determine load reductions.</td>
</tr>
</tbody>
</table>

Segment 1 of the Big Dry Creek Basin in the South Platte River Basin in Colorado is defined as the mainstem of Big Dry Creek, including all tributaries, lakes, reservoirs and wetlands, from the source to the confluence with the South Platte River, except for specific listings in Segments 2, 3, 4a, 4b, 5 and 6. Segment 1 includes approximately 48 stream miles within the watershed. Approximately 21% of the segment lies in Jefferson County, 41% in Adams County, 11% in Broomfield County, and the remaining 27% in Weld County.

In 2004, the Recreation classification for Segment 1 of Big Dry Creek was changed from a Recreation Class 2 (Rec N, or no primary contact recreation) to a Recreation Class 1b (Rec P, or potential primary contact recreation) standard with a corresponding change in the *Escherichia coli* ("*E. coli*") standard from 630 cfu/100 mL to 205 cfu/100 mL. (WQCC, 2016b) As a result of the change in standard, Segment 1 has been on the State’s 303(d) list of water quality impaired waterbodies since 2006 for exceeding the Recreation P *E. coli* standard of 205 colony forming units per one hundred milliliters (cfu/100mL). (WQCC, 2016a)

Fecal coliform and *Escherichia coli* (*E. coli*) are indicators of the possible presence of pathogenic organisms that may cause illness in those who come in contact with or ingest contaminated waters. Segment 1 routinely exceeds current pathogen standards. The goal of this total maximum daily load (TMDL) assessment is the protection of recreational uses and public health.

The organismal contributions of *E. coli* in segment 1 are presently unconfirmed, i.e. wildlife, human, or domestic animal sources. However, CDPS permitted discharges have been monitored in Big Dry Creek since 2003. Significant contributions of *E. coli* are conveyed to segment 1 through urban stormwater collection systems during storm events and exceedances of the *E. coli* standard routinely occurred in wastewater treatment effluent during summer months prior to 2008.

E. coli levels are measured as a density-based unit, i.e. a number of bacteria colony forming units (cfu) per 100 milliliters (mL) of water. *E. coli* sources are presumed to be non-additive.
due to death, reproduction, and diurnal fluctuations. In addition to the non-additive nature of indicator bacteria, flows in Big Dry Creek Segment 1 fluctuate on a non-seasonal basis due to intensive water management. Therefore, the Colorado Water Quality Control Division (WQCD) has adopted a density-based approach for this TMDL assessment, which allocates pollutant loads to sources based upon the \textit{E. coli} water quality standard.

The segment was divided into three distinct reaches to account for changes in land use, influences in river flow (diversions, reservoir releases, WWTF contributions, etc.), and location of permitted point sources. TMDLs were developed for each reach: Upper Reach (from outlet of Standley Lake and Great Western Reservoir to sample location BDC 1.5); Middle Reach (from BDC 1.5 to 152nd Avenue); and Lower Reach (from 152nd Avenue to the confluence with the South Platte River). Allowable loads and wasteloads for \textit{E. coli} were developed for varying flow conditions at a representative assessment location in each reach (Tables 2-4).

| Table 2. Upper Reach \textit{E. coli} TMDL: allowable loading and pollutant reductions necessary to meet the recreation based \textit{E. coli} standard in Big Dry Creek. |
|---------------------------------|-----------------|----------------|--------------|-------------|------|
| Loading Calculations (Giga cfu/day) | High Flow | Moist Conditions | Mid-Range Flows | Dry Conditions | Low Flow |
| TMDL | 290.90 | 80.25 | 20.06 | 10.03 | 6.02 |
| MOS (10%) | 29.09 | 8.02 | 2.01 | 1.00 | 0.60 |
| Allowable Load | 261.81 | 72.22 | 18.06 | 9.03 | 5.42 |
| Existing Load | 234.61 | 124.74 | 16.69 | 10.18 | 12.56 |
| Require Reduction | 0% | 42% | 0% | 11% | 57% |
| **WLA** | | | | | |
| MS4s | 201.59 | 55.61 | 13.90 | 6.95 | 4.17 |
| Reserve Capacity | 10.08 | 2.78 | 0.70 | 0.35 | 0.21 |
| **LA** | | | | | |
| Nonpoint Source | 50.14 | 13.83 | 3.46 | 1.73 | 1.04 |
Table 3. Middle Reach \textit{E. coli} TMDL: allowable loading and pollutant reductions necessary to meet the recreation based \textit{E. coli} standard in Big Dry Creek.

<table>
<thead>
<tr>
<th>Loading Calculations (Giga-cfu/day)</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL</td>
<td>423.34</td>
<td>198.56</td>
<td>129.18</td>
<td>73.58</td>
<td>27.94</td>
</tr>
<tr>
<td>MOS (10%)</td>
<td>42.33</td>
<td>19.86</td>
<td>12.92</td>
<td>7.36</td>
<td>2.79</td>
</tr>
<tr>
<td>Allowable Load</td>
<td>381.01</td>
<td>178.71</td>
<td>116.26</td>
<td>66.22</td>
<td>25.14</td>
</tr>
<tr>
<td>Existing Load</td>
<td>1119.13</td>
<td>425.48</td>
<td>244.05</td>
<td>114.49</td>
<td>94.98</td>
</tr>
<tr>
<td>Required Reductions</td>
<td>66%</td>
<td>58%</td>
<td>52%</td>
<td>42%</td>
<td>74%</td>
</tr>
</tbody>
</table>

WLA

Westminster WWTF	58.24	54.32	51.49	31.97	16.99
Broomfield WWTF	74.20	64.00	57.63	31.58	4.92
MS4s	149.14	36.23	4.29	1.60	1.94
Reserve Capacity	7.46	1.81	0.21	0.08	0.10

LA

| Non-point Source | 91.97 | 22.34 | 2.64 | 0.99 | 1.19 |

Table 4. Lower Reach \textit{E. coli} TMDL: allowable loading and pollutant reductions necessary to meet the recreation based \textit{E. coli} standard in Big Dry Creek.

<table>
<thead>
<tr>
<th>Loading Calculations (Giga cfu/day)</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL</td>
<td>461.43</td>
<td>225.70</td>
<td>150.47</td>
<td>115.36</td>
<td>65.20</td>
</tr>
<tr>
<td>MOS (10%)</td>
<td>46.14</td>
<td>22.57</td>
<td>15.05</td>
<td>11.54</td>
<td>6.52</td>
</tr>
<tr>
<td>Allowable Load</td>
<td>415.28</td>
<td>225.70</td>
<td>150.47</td>
<td>115.36</td>
<td>65.20</td>
</tr>
<tr>
<td>Existing Load</td>
<td>1682.14</td>
<td>619.55</td>
<td>256.30</td>
<td>134.65</td>
<td>140.81</td>
</tr>
<tr>
<td>Required Reductions</td>
<td>75%</td>
<td>64%</td>
<td>41%</td>
<td>14%</td>
<td>54%</td>
</tr>
</tbody>
</table>

WLA

Northglenn WWTF	50.44	50.44	50.44	50.44	50.44
MS4s	43.78	18.32	10.20	6.41	0.99
Reserve Capacity	4.38	1.83	1.02	0.64	0.10

LA

| Non-point Source | 316.68 | 132.53 | 73.76 | 46.33 | 7.15 |

1.0 Introduction

Section 303(d) of the federal Clean Water Act (CWA) requires States to periodically submit to the U. S. Environmental Protection Agency (EPA) a list of water bodies that are water quality impaired. A water quality impaired segment does not meet the standards for its designated use classification. This list of impaired water bodies is referred to as the “303(d) List”. In Colorado, the agency responsible for developing the 303(d) List is the Water Quality Control...
Division (WQCD). The List is adopted by the Water Quality Control Commission (WQCC) as Regulation No. 93.

This TMDL was assigned a high priority by the WQCC. The assigned priority is due to the documented non-attainment of a human health based water quality standard. Completion of this TMDL is consistent with the priority assigned by the WQCC.

For water bodies and streams on the 303(d) list a Total Maximum Daily Load (TMDL) is used to determine the maximum amount of a pollutant that a water body may receive and still maintain water quality standards. The TMDL is the sum of the Waste Load Allocation (WLA), which is the load from permitted point source discharges, Load Allocation (LA) which is the load attributed to natural background and/or non-point sources, and a Margin of Safety (MOS) (Equation 1).

\[\text{TMDL} = \text{WLA} + \text{LA} + \text{MOS} \]

(Equation 1)

Big Dry Creek Segment 1, designated as COSPBD01, is located in Adams, Broomfield, Jefferson, and Weld Counties, within the South Platte Watershed. Approximately 10.1 stream miles of Segment 1 lies within Jefferson County, 19.8 miles in Adams County, 5.4 miles in Broomfield and approximately 12.8 stream miles lies within Weld County. The mainstem of Big Dry Creek, including all tributaries, lakes, reservoirs and wetlands, from the source to the confluence with the South Platte River, (except for specific listings in Segments 2, 3, 4a, 4b, 5 and 6) first appeared on the Colorado 2006 303(d) List for non-attainment of the \(E. \ coli \) standard and remains on the 2016 303(d) list (WQCC, 2016a) as a high priority due to the human health risk.

A segment or pollutant may be removed from the List if the applicable standard is attained, if implementation of clean-up activities via an alternate means will result in attainment of standards, if the original listing decision is shown to be in error, or if the standards have been changed as the result of a Use Attainability Analysis (UAA) or other EPA approved recalculation method.

1.1 Land Use

The Big Dry Creek drainage basin (Figure 1-1) lies north of the city of Denver and the listed segment (COSPBD01) accounts for approximately 48 miles of river in the basin. The segment begins in Jefferson County at Standley Lake, just north of the town of Arvada and south of Highway 128. It then flows north and east through Adams County, a small portion flows through Broomfield County, back to Adams County and into Weld County until its confluence with the South Platte River near the town of Fort Lupton. Big Dry Creek is a highly managed stream segment based on the exercise and beneficial uses of water rights. Several ditches receive flow from Big Dry Creek and tributary and reservoir releases supplement flow into the Big Dry Creek stream segment.

Recreational use of the upper portion of Big Dry Creek occurs frequently. A 10-mile trail along Big Dry Creek is managed by the City of Westminster, and is used by a variety of outdoor enthusiasts. Westminster began preservation of the Big Dry Creek Open Space and Trail Corridor in 1989 with the acquisition of four acres. Since then, almost 700 acres have been acquired along this 9.5-mile corridor, which travels through the middle of the City. The City acquired this corridor for open space, trails, natural areas, and view preservation.
Abundant wildlife and native vegetation thrive along the trail corridor, bringing tranquility to this otherwise urban center. The Big Dry Creek Trail is a regional trail and ultimately this corridor will allow connections to be made to the South Platte River Corridor and to the communities of Broomfield, Thornton, and Northglenn to the east.

In addition to the Big Dry Creek trail, the Big Dry Creek watershed is home to an 18-acre community park that houses baseball and soccer fields, picnic shelters, a playground, and a dog park. Significant portions of the watershed are currently undergoing rapid urban development, transitioning from predominantly agricultural uses to include a mixture of residential, commercial and industrial uses. The total drainage area at the confluence is approximately 110 square miles with a 42-mile length. The watershed area includes three HUC12 subwatersheds; upper, middle, and lower big dry creek (Table 1.1-1).

<table>
<thead>
<tr>
<th>HUC12</th>
<th>HUC12 Name</th>
<th>Size (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101900030406</td>
<td>Upper Big Dry Creek</td>
<td>22675.58</td>
</tr>
<tr>
<td>101900030407</td>
<td>Middle Big Dry Creek</td>
<td>23985.66</td>
</tr>
<tr>
<td>101900030408</td>
<td>Lower Big Dry Creek</td>
<td>22643.8</td>
</tr>
</tbody>
</table>
The TMDL reaches are also divided into upper, middle and lower portions, with slightly different boundaries than the HUC12 breaks in the upper and middle portions (Figure 1.1-1). The portioning was decided based on significant changes in flow throughout the entire segment, due to reservoir releases, diversions, and WWTF discharges. As well as, changes in landuse. This is illustrated in the national landcover dataset (NLCD 2006) for the watershed (Figure 1.1-2). Three reaches were identified as follows: Upper Reach (from outlet of Standley Lake and Great Western Reservoir to sample location BDC 1.5); Middle Reach (from BDC 1.5 to 152nd Avenue); and Lower Reach (from 152nd Avenue to the confluence with the South Platte River).
The upper and middle reaches are predominately urban, with 77%-60% developed land use (Figures 1.1-2). The developed landuse group consists of four classifications; open space, low intensity, medium intensity and high intensity. Descriptions are below (Table 1.1-2).

Table 1.1-2. Descriptions of NLCD developed landuse classifications

Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.

Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.

Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.

Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.
The lower reach, is predominately rural/agriculture, with 79% of the landuse classified as cultivated crops, and only 12% urban/developed. This is where the watershed transitions to private agricultural land. The area in acres per reach is shown in Table 1.1-3. As well as showing the relative size of each reach, with the upper and middle reaches being comparable in size (29-31% of the TMDL watershed area) and the largest area being the lower portion (41%). Figures 1.1-3 through 1.1-5 illustrate the dominant land use classifications in each reach.

<table>
<thead>
<tr>
<th>NLCD Landuse Group</th>
<th>Upper Reach</th>
<th>Middle Reach</th>
<th>Lower Reach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (acres)</td>
<td>% of watershed</td>
<td>Area (acres)</td>
</tr>
<tr>
<td>Water</td>
<td>102.2</td>
<td>1%</td>
<td>204.3</td>
</tr>
<tr>
<td>Developed</td>
<td>13160.1</td>
<td>77%</td>
<td>9575.6</td>
</tr>
<tr>
<td>Barren</td>
<td>23.4</td>
<td>0%</td>
<td>15.8</td>
</tr>
<tr>
<td>Forest</td>
<td>10.0</td>
<td>0%</td>
<td>16.0</td>
</tr>
<tr>
<td>Shrubland</td>
<td>295.8</td>
<td>2%</td>
<td>12.6</td>
</tr>
<tr>
<td>Herbaceous</td>
<td>2146.7</td>
<td>12%</td>
<td>1187.1</td>
</tr>
<tr>
<td>Planted/Cultivated</td>
<td>850.2</td>
<td>5%</td>
<td>4378.3</td>
</tr>
<tr>
<td>Wetlands</td>
<td>599.4</td>
<td>3%</td>
<td>639.0</td>
</tr>
<tr>
<td>Total</td>
<td>17187.7</td>
<td>31%</td>
<td>16028.8</td>
</tr>
</tbody>
</table>

Figure 1.1-3. Landuse percentages for the upper reach; Standley lake outlet to BDC1.5.
1.2 Discharge Permits and Property Ownership

The National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States. Industrial, municipal, and other facilities must obtain permits if their discharges go directly to surface waters. Currently, there are several active Colorado Pollutant Discharge System (CDPS) permitted discharges into Segment 1 of Big Dry Creek. Segment 1 currently has three active CDPS individual dischargers with *E. coli* as a pollutant of concern. The City of Broomfield is the first in a series of wastewater treatment facilities to discharge to Big Dry Creek. The City of Westminster discharges approximately 2.4 miles downstream of Broomfield’s discharge and the City of Northglenn discharges approximately 6.7 miles further downstream.
Table 1.2-1 Permitted discharges to Big Dry Creek Segment 1.

<table>
<thead>
<tr>
<th>Permitted Facility</th>
<th>CDPS ID</th>
<th>SIC Desc</th>
<th>Design Capacity (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Westminster (Big Dry Creek) WWTF</td>
<td>CO0024171</td>
<td>sewer systems</td>
<td>11.9</td>
</tr>
<tr>
<td>City of Broomfield WWTF</td>
<td>CO0026409</td>
<td>sewer systems</td>
<td>12.0</td>
</tr>
<tr>
<td>City of Northglenn WWTF</td>
<td>CO0036757</td>
<td>sewer systems</td>
<td>6.5</td>
</tr>
</tbody>
</table>

A water quality assessment (WQA) is prepared upon each individual permit renewal to facilitate issuance of the CDPS permits. The WQA is done on a watershed scale, and determines the assimilative capacities available to the facilities for pollutants of concern. The *E. coli* permit limits changed from 635 cfu/100 mL to 205 cfu/100 mL with the 2010 permit renewal. The new limits were consistent with the change in water quality standards along Big Dry Creek. In order to meet the anticipated change in permit limits, the facilities had to undergo some upgrades in treatment. Currently, all three facilities have ultraviolet (UV) disinfection, and discharge concentrations of *E. coli* well below the 205 cfu/100 mL water quality standard. The facilities are in compliance with their permits regarding *E. coli*, as reported in their monthly discharge monitoring reports (DMRs). The permit includes a 30-day average as well as a 7-day maximum, at 410 cfu/100 mL. All DMR *E. coli* values are reported as geomeans. A summary of the most recent 5 years of DMR data for Broomfield, Westminster and Northglenn WWTFs can be seen in Table 7.2-1.

1.3 Hydrologic Influence

Big Dry Creek is a highly managed stream, with reservoir releases, diversion ditches, tributaries, and WWTF discharges. All of which influence flow fluctuations along the creek. Figure one is a simple representation of the system. The BDCWA included a diagram (Figure 1.3-1) in their annual report(s) (WWE, 2015) which demonstrate the hydrologic influences along segment 1. While the data is in acre feet per year (2005-2009), and does not include seasonal variation, it does help illustrate the impact of flow management in the watershed. The impact of the WWTF discharges on the middle reach are accounted for in determining the TMDL.
2.0 Water Quality Standards

Waterbodies in Colorado are divided into discrete units or “segments”. The Colorado Basic Standards and Methodologies for Surface Water, Regulation 31(WQCC 2006b), discusses segmentation of waterbodies in terms of several broad considerations:

31.6(4)(b)...Segments may constitute a specified stretch of a river mainstem, a specific tributary, a specific lake or reservoir, or a generally defined grouping of waters within the basin (e.g., a specific mainstem segment and all tributaries flowing into that mainstem segment).

(c) Segments shall generally be delineated according to the points at which the use, physical characteristics or water quality characteristics of a watercourse are determined to change significantly enough to require a change in use classifications and/or water quality standards.
2.1 Beneficial Uses
As noted in paragraph 31.6(4)(c), the use or uses of surface waters are an important consideration with respect to segmentation. In Colorado there are four categories of beneficial use which are recognized. These include Aquatic Life Use, Recreational Use, Agricultural Use and Water Supply Use. A segment may be designated for any or all of these “Use Classifications”. Three of the four use classifications apply to Segment 1 of Big Dry Creek; aquatic life, recreational and agriculture. These uses are described further in Table 2.2-1, and impairment status only refers to *E. coli*.

<table>
<thead>
<tr>
<th>Designated Use Classification</th>
<th>Use Description</th>
<th>E. coli Impairment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic Life; Warm 2</td>
<td>Class 2 - Warm Water Aquatic Life; These are waters that are not capable of sustaining a wide variety of cold or warm water biota, including sensitive species, due to physical habitat, water flows or levels, or uncorrectable water quality conditions that result in substantial impairment of the abundance and diversity of species.</td>
<td>Not Impaired</td>
</tr>
<tr>
<td>Recreation; P</td>
<td>Potential Primary Contact; waters where primary contact (activities where the ingestion of small quantities of water is likely to occur) uses will occur, where a reasonable level of inquiry has failed to identify any existing primary contact uses*</td>
<td>Impaired</td>
</tr>
<tr>
<td>Water Supply</td>
<td>After treatment, surface waters suitable for drinking water supplies</td>
<td>NA</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Water suitable for irrigation and livestock watering</td>
<td>Not Impaired</td>
</tr>
</tbody>
</table>

*A student recreational use survey was used as evidence and accepted by the WQCC to classify water as potentially primary contact (WQCC, 2016b).

Each assigned use is associated with a series of pollutant specific numeric standards. These pollutants may vary and are relevant to a given classified use. Numeric
pollutant criteria are identified in sections 31.11 and 31.16 of the Basic Standards and Methodologies for Surface Water (WQCC, 2015a).

2.2 Recreation Use

The high \textit{E. coli} concentrations within Big Dry Creek Segment 1 exceed the standards to protect human health. The standards adopted on this segment protect potential primary contact use (Recreation Class P). Primary contact is defined as recreational activities where the ingestion of small quantities of water is likely to occur. Such activities include but are not limited to swimming, rafting, kayaking, tubing, windsurfing, water-skiing, and frequent water play by children. (WQCC, 2015a) The class P criterion of 205 cfu/100 ml is based on a policy decision to accept a higher risk level - 10 illnesses per 1000 swimmers - for this classification, based on the assumption that primary contact uses are not currently likely to be occurring for these water segments, although such uses may be a potential in the future.

In 2004 the division proposed changing the classification of Big Dry Creek segment 1 from not primary contact use (class N) to existing primary contact use (class E). The change was opposed based on 2000 UAA and 2003 student survey of recreational uses. The commission adopted a revised proposal of potential primary contact use (class P) (WQCC, 2016b).

2.3 \textit{E. Coli} Water Quality Standard

\textit{E. coli} criteria and resulting standards for individual water segments are established as indicators of the potential presence of pathogenic organisms. The U.S. Environmental Protection Agency (EPA) published the current national water quality criteria for bacteria in surface water in 1986 (Ambient Water Quality Criteria for Bacteria, 1986 (EPA440/5-84-002)). The criteria are based upon currently accepted illness rates, which are an estimated 8 illnesses per 1,000 swimmers at fresh water beaches. That rate of illness was calculated using the fecal coliform indicator group at the maximum geometric mean of 200 cfu per 100 ml of water. In the 1986 criteria document, EPA made a transition from fecal coliform to \textit{E. coli} at the same illness rate, which was correlated to a maximum geometric mean of 126 cfu per 100 ml of water.

The Colorado \textit{E. coli} standard established by the Commission for potential primary contact recreation is contained in Colorado Regulation 31. In Section 31.16 of Regulation 31, the \textit{E. coli} standard expressed as a two month geometric mean of 205 CFU/100 mL, applicable year-round. This enforceable \textit{E. coli} water quality standard for Segment 1 has been adopted in Regulation 38, the South Platte Basin regulation.

2.4 Listing History

Historically Big Dry Creek was classified as not primary contact use with a corresponding standard of 630 cfu/100mL. Segment 1 was designated as a Recreation Class P use with the corresponding standard of 205 cfu per 100 ml \textit{E. coli} at the South Platte Rulemaking Hearing in 2004. The class P criterion of 205 cfu per 100 ml is based on a policy decision to accept a higher risk level of 10 illnesses per 1,000 swimmers, based on the assumption that primary contact are not currently likely to be occurring. Consequently, in 2006, the segment was identified on the State’s 303(d) List of Impaired Waterbodies as impaired by \textit{E. coli}. And has remained on the subsequent 2008, 2010, 2012 and 2016 303(d) Lists'.
Table 2.3-1 Water Quality Criteria for Impaired Designated Uses

<table>
<thead>
<tr>
<th>WBID</th>
<th>Impaired Designated Use</th>
<th>Applicable Water Quality Criteria and Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSPBD01</td>
<td>Recreation; P</td>
<td>E. coli^1^ / Not attained</td>
</tr>
</tbody>
</table>

1. Classifications and Numeric Standards for South Platte River Basin (Reg. 38)

3.0 Problem Identification

Substantial monitoring of *E. coli* has occurred on segment 1. Several agencies and entities have performed monitoring, including the Big Dry Creek Watershed Association (BDCWA), EPA and the division. The data used in developing the TMDL are strictly from the consistent and ongoing monitoring done by the association at 8 well established locations along Big Dry Creek.

E. coli levels in segment 1 are not spatially or temporally consistent, which makes it difficult to show a consistent pattern or location of *E. coli* loading or significant die-off. In general, *E. coli* levels in segment 1 are higher in the summer than other months. *E. coli* also typically has a diurnal pattern with *E. coli* levels generally highest in the early morning due to ultraviolet radiation from sunlight later in the day causing genetic mutation in *E. coli* (Burkhardt, 2000). As a result of the mutation, individual organisms are not able to reproduce.

4.0 Water Quality Goal and Target

The goal of this TMDL assessment is to protect public health through attainment of the *E. coli* water quality standard throughout segment 1. To achieve this goal, the Division is proposing a density-based allocation approach to this TMDL that will encompass nonpoint and point sources of *E. coli*. The ambient water-quality standard is reflective of the entire stream segment as a whole; therefore any point sampled on Segment 1 should meet the *E. coli* standard of 205 cfu/100 ml. Attainment of the numeric target will be determined by the calculation of an *E. coli* geometric mean for the entire segment as a whole, in addition to compliance with NPDES permitted treatment facilities *E. coli* limit of 205 cfu/100 mL. The limit will not be based on acute exceedances. There are no acute *E. coli* standards, however the permits contain an acute limit. The acute limit is double the chronic standard, 410 cfu/100mL.

5.0 Instream Conditions
5.1 Hydrology and Climate

The hydrograph of Big Dry Creek, both upstream near Westminster and further downstream near the confluence with the South Platte River (near Fort Lupton), is typical of a highly managed stream, with low flows occurring in the late fall to early spring followed by a large increase in flow, which usually begins in April, due to snowmelt and spring rains that tail off through the early summer months (Figure 5.1-1). Big Dry Creek demonstrates greater influences from summer rain events and releases from Standley Lake upstream.
The hydrographs demonstrate the flow changes in Big Dry Creek from the upper portion, Westminster gage, to the lower portion, Ft Lupton gage near the confluence. The Westminster gage is upstream of the Broomfield and Westminster WWTFs and Bull canal. There are releases from Standley Lake which affect the flow, as well as big diversions. The greatest difference in flow at the two gages occurs in non-summer months. Flow in Big Dry Creek was modeled as part of a report (Lewis, 2007) for the permitted WWTFs, completed in preparation of their permit renewal. The report explains the disparity in flow gages as typical of front range streams. And ungaged flow (seepage) would account for the accumulations of flow between upstream and downstream gages.
Figure 5.1-2. Monthly flow distribution of Big Dry Creek at Westminster, CO. The box-and-whisker plots delineate the 95th, 75th, 25th, and 5th percentiles of the measured flow concentrations. Taller boxes indicate more variability in flows during that month. A red line indicates the median concentration in each month. Flow is in cubic feet per second (cfs).
Median monthly flows were calculated from the nearest USGS gage. The variability in monthly stream flows along the mainstem of Big Dry Creek is illustrated in Figures 5.1-2 and 5.1-3. The largest range of flows occurs in the months of May-July. Flows at Big Dry Creek near the Fort Lupton gage are as much as twice that of flows recorded at the upper gage on Big Dry Creek at Westminster, CO during periods of higher flow which may correspond with irrigation season (i.e. May through September). Flows at Big Dry Creek near the Fort Lupton gage are twelve to sixteen times greater than flows recorded at the upper gage on Big Dry Creek at Westminster, CO during periods of lower flow which may correspond with non-irrigation season (i.e. October through April).

Historic gage flow data are captured in Table 5.1-1. Monthly median flows for Big Dry Creek at Westminster, USGS gage 6720820 (POR 1987-2012) and Big Dry Creek near Fort Lupton, USGS gage 6720990 (POR 1992-2012) were calculated.
Table 5.1-1. Monthly median flows for Big Dry Creek, USGS gage daily flow data.

<table>
<thead>
<tr>
<th>Month</th>
<th>BDC at Westminster (cfs)</th>
<th>BDC near Fort Lupton (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>1.5</td>
<td>25.0</td>
</tr>
<tr>
<td>Feb</td>
<td>1.8</td>
<td>24.0</td>
</tr>
<tr>
<td>Mar</td>
<td>1.9</td>
<td>26.0</td>
</tr>
<tr>
<td>Apr</td>
<td>3.8</td>
<td>48.0</td>
</tr>
<tr>
<td>May</td>
<td>14.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Jun</td>
<td>36.5</td>
<td>35.0</td>
</tr>
<tr>
<td>Jul</td>
<td>22.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Aug</td>
<td>24.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Sep</td>
<td>13.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Oct</td>
<td>2.5</td>
<td>33.0</td>
</tr>
<tr>
<td>Nov</td>
<td>2.5</td>
<td>29.0</td>
</tr>
<tr>
<td>Dec</td>
<td>1.7</td>
<td>25.0</td>
</tr>
</tbody>
</table>

In the Big Dry Creek watershed, data was taken from the weather station at Northglenn, Colorado (#055984). Climate data for the Northglenn Weather Station, for the period of September 1984 through September 2012 is summarized as follows:

Average annual precipitation: 14.15 in.
Month of highest precipitation: May (2.17 in.)
Month of lowest precipitation: January (0.39 in.)
Average annual snowfall: 42.9 in.
Average annual temperature: 51.35º F
Month of highest average temperature: July (73.8º F)
Month of lowest average temperature: December (31.8º F)
(Source: http://www.wrcc.dri.edu/summary/clismco.html)

5.2 Ambient Water Quality

Data has been collected at eight routine monitoring sites on Big Dry Creek since 2000 and two additional sites since 2003 (Table 5.2-1). Table 5.2-2 illustrates E. coli geometric mean data collected at eight routine sampling locations by the Big Dry Creek Watershed Association. The data is considered to be data collected during both dry and wet weather periods.
Table 5.2-1. Sampling locations of routine monitoring sites on Big Dry Creek Segment 1

<table>
<thead>
<tr>
<th>Sampling Stations</th>
<th>Sampling Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bdc 0.5</td>
<td>Downstream of Old Wadsworth & Church Blvd; Church Ranch Open Space</td>
</tr>
<tr>
<td>bdc 1.0</td>
<td>Downstream of 112th Ave. (100 yds N. of 112th & Vrain; also reported at 110th & Sheridan)</td>
</tr>
<tr>
<td>bdc 1.5</td>
<td>Downstream of 120th Ave.</td>
</tr>
<tr>
<td>bdc 2.0</td>
<td>Upstream of 128th Ave., 0.5 miles West of Huron, downstream of Broomfield WWTP discharge</td>
</tr>
<tr>
<td>bdc 3.0</td>
<td>I-25 & Thorn Creek Golf Course, downstream of Westminster WWTP Discharge</td>
</tr>
<tr>
<td>bdc 4.0</td>
<td>York Street (0.5 miles S of 160th & York)</td>
</tr>
<tr>
<td>Bdc 4.5*</td>
<td>Downstream of York St; replacement site for bdc 4.0 for field staff safety</td>
</tr>
<tr>
<td>bdc 5.0</td>
<td>Downstream of Weld County Road 4, 0.3 miles West of Road 17</td>
</tr>
<tr>
<td>bdc 6.0</td>
<td>Upstream from bridge on Weld County Road 8, Near Wattenberg & Weld County Rd 23</td>
</tr>
<tr>
<td>bdc 10.0</td>
<td>Broomfield WWTP Discharge to Big Dry Creek</td>
</tr>
<tr>
<td>bdc 11.0</td>
<td>Westminster WWTP Discharge</td>
</tr>
</tbody>
</table>

*Location of bdc 4.0 was moved in April 2011, becoming bdc 4.5. For purposes of evaluating the entire period of record bdc 4.0 and bdc 4.5 were considered the same location.

Table 5.2-2. *E. coli* geomeans for routine sampling locations on Big Dry Creek

<table>
<thead>
<tr>
<th>Sampling Stations</th>
<th>E. coli Geomean</th>
<th>Count</th>
<th>Period of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>bdc 0.5</td>
<td>164</td>
<td>153</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 1.0</td>
<td>186</td>
<td>119</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 1.5</td>
<td>241</td>
<td>165</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 2.0</td>
<td>408</td>
<td>168</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 3.0</td>
<td>325</td>
<td>171</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 4.0</td>
<td>258</td>
<td>142</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 5.0</td>
<td>219</td>
<td>168</td>
<td>2003-2014</td>
</tr>
<tr>
<td>bdc 6.0</td>
<td>388</td>
<td>134</td>
<td>2003-2014</td>
</tr>
</tbody>
</table>

Geometric mean concentrations are highest at site bdc 2.0, Big Dry Creek upstream of 128th Avenue, downstream of the Broomfield WWTF, while the second highest observed concentrations are seen at site bdc 6.0, upstream from Weld County Road 8. The 12-year record of *E. coli* concentrations in Big Dry Creek does not indicate a significant trend in *E. coli* concentrations over the period of record (Figure 5.2-1). Slightly higher concentrations during 2001 and 2002 may indicate the influence of drought conditions on stream *E. coli* concentrations. However, direct comparison of concentrations among years may be misleading unless some consideration is given to flow conditions in each year.
Figure 5.2-1 Annual *E. coli* geomeans at routine monitoring sites along Big Dry Creek

The variability in *E. coli* concentrations among years is displayed effectively with box-and-whisker plots showing the distribution of values observed in each year (Figure 5.2-2). The box-and-whisker plots delineate the 95th, 75th, 25th, and 5th percentiles of the measured concentrations. Taller boxes indicate more variability in *E. coli* concentrations during that year. A red line indicates the median concentration in each year. The *E. coli* values were averaged across all sites for a given day, before percentiles were calculated for the year. The yearly percentiles represent variation for the entire segment. Thus Figure 5.2-2 represents variation for the entire segment, from year to year.

Figure 5.2-2. Annual distribution of *E. coli* concentrations in Big Dry Creek.
There are an inadequate number of samples to calculate annual geomeans (5 samples per 60 day period) per listing methodology guidance. Therefore, Table 5.2.3 shows two month geomeans along Big Dry Creek, upstream to downstream (left to right) from 2003-2014. Any exceedance of the 205 cfu/100 mL standard have been highlighted. Nearly all two-month intervals, at all sampling locations, exceed the standard in the recreation season (May-Oct). The recreation season is the time where human contact would most likely occur.

<table>
<thead>
<tr>
<th>Two Month Interval</th>
<th>bdc 0.5</th>
<th>bdc 1.0</th>
<th>bdc 1.5</th>
<th>bdc 2.0</th>
<th>bdc 3.0</th>
<th>bdc 4.0</th>
<th>bdc 5.0</th>
<th>bdc 6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan/Feb</td>
<td>43</td>
<td>23</td>
<td>66</td>
<td>337</td>
<td>213</td>
<td>138</td>
<td>105</td>
<td>148</td>
</tr>
<tr>
<td>Mar/Apr</td>
<td>79</td>
<td>74</td>
<td>100</td>
<td>147</td>
<td>146</td>
<td>76</td>
<td>72</td>
<td>263</td>
</tr>
<tr>
<td>May/Jun</td>
<td>377</td>
<td>522</td>
<td>160</td>
<td>556</td>
<td>414</td>
<td>462</td>
<td>483</td>
<td>816</td>
</tr>
<tr>
<td>Jul/Aug</td>
<td>350</td>
<td>656</td>
<td>838</td>
<td>809</td>
<td>558</td>
<td>493</td>
<td>470</td>
<td>733</td>
</tr>
<tr>
<td>Sep/Oct</td>
<td>262</td>
<td>291</td>
<td>486</td>
<td>622</td>
<td>640</td>
<td>504</td>
<td>430</td>
<td>628</td>
</tr>
<tr>
<td>Nov/Dec</td>
<td>63</td>
<td>46</td>
<td>147</td>
<td>320</td>
<td>255</td>
<td>240</td>
<td>149</td>
<td>145</td>
</tr>
</tbody>
</table>

6.0 Technical Analysis

6.1 Load Duration Curve

Load duration curves are used in this TMDL to determine the load reductions necessary to meet the target concentrations for *E. coli* of 205 cfu/100 mL. A duration curve is a cumulative frequency graph that represents the percentage of time during which the value of a given parameter is equaled or exceeded. Load duration curves are develop from flow duration curves and can illustrate existing water quality conditions, compared to desired targets, and the portion of the segment flow represented by these existing loads. The flow duration curve relates flow values to the percent of time those values have been met or exceeded. According to the EPA 841-B-07-006 document (USEPA, 2007):

“The use of “percent of time” provides a uniform scale ranging between 0 and 100. Thus, the full range of stream flows is considered. Low flows are exceeded a majority of the time, while floods are exceeded infrequently.

A basic flow duration curve runs from high to low along the x-axis. The x-axis represents the duration amount, or “percent of time”, in a cumulative frequency distribution. The y-axis represents the flow value (e.g. cubic feet per second) associated with the “percent of time” (or duration)...”

Flow duration curves represent the percent of time a flow is likely to be equaled or exceeded within the stream based on historic flow data. This allows for the grouping of flow conditions, in this case into five general indicator categories. The “high-flow” category represents flows observed during the greatest 10 percent of all flow values; ‘moist conditions’ represents flow values observed 30 percent of the time (they are equaled or exceeded 10-40 percent of the time); ‘mid-ranges’ represents 20 percent of all flows (equaled or exceeded 40-60 percent of the time); ‘dry-conditions’
represents 30 percent of all flows (equaled or exceeded 60 to 90 percent of the time); and 'low-flow' conditions exist about 10 percent of the time, with 90 to 100 percent of all flows equaling or exceeding those in the low flow category (previously mentioned in Section 5.1). Daily flow data from the two gages were used to calculate flow duration curves (Figures 6.1-1 and 6.1-2). The period of record for the gage data was 2003-2014.

<table>
<thead>
<tr>
<th>Flow Regime</th>
<th>Flow Range (cfs)</th>
<th>Median Flow (cfs)</th>
<th>% of time flows equal or greater occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>44-418</td>
<td>58</td>
<td><10%</td>
</tr>
<tr>
<td>Moist</td>
<td>6.6-43</td>
<td>16</td>
<td>10-40%</td>
</tr>
<tr>
<td>Mid-Range</td>
<td>2.9-6.5</td>
<td>4</td>
<td>40-60%</td>
</tr>
<tr>
<td>Dry</td>
<td>1.5-2.8</td>
<td>2</td>
<td>60-90%</td>
</tr>
<tr>
<td>Low</td>
<td>0.11-1.4</td>
<td>1.2</td>
<td>90-100%</td>
</tr>
</tbody>
</table>

Figure 6.1-1. Flow duration curve using daily flow data from USGS gage 6720820, big dry creek at Westminster, including median flow values for each flow regime.
<table>
<thead>
<tr>
<th>Flow Regime</th>
<th>Flow Range (cfs)</th>
<th>Median Flow (cfs)</th>
<th>% of time flows equal or greater occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>69-736</td>
<td>92</td>
<td><10%</td>
</tr>
<tr>
<td>Moist</td>
<td>35-68</td>
<td>45</td>
<td>10-40 %</td>
</tr>
<tr>
<td>Mid-Range</td>
<td>28-34</td>
<td>30</td>
<td>40-60 %</td>
</tr>
<tr>
<td>Dry</td>
<td>18-27</td>
<td>23</td>
<td>60-90%</td>
</tr>
<tr>
<td>Low</td>
<td>0.4-17</td>
<td>13</td>
<td>90-100%</td>
</tr>
</tbody>
</table>

Figure 6.1-2. Flow duration curve using daily flow data from USGS gage 6720990, Big Dry Creek near Ft Lupton, including median flow values for each flow regime.

In order to analyze monitoring data collected by stakeholders within the watershed, and to determine if any sources could be identified based on flow conditions, load durations curves were evaluated at all sampling sites along Big Dry Creek, as well as the entire segment. According to the EPA guidance document (USEPA, 2007), the LDC method allows a visual display relating stream flow and loading capacity, as well as accounting for seasonal variations. The flow groupings, or regimes identified in the flow duration curve, can then be applied to the LDC. The water quality standards can then be represented on the same graph, by multiplying the instream flow values by the water quality target (205 cfu/100ml) and a conversion factor (24465888 to get to cfu/day). This trendline (blue solid line) represents the assimilative capacity (or water quality target) of the stream. The collected *E. coli* data is then plotted to illustrate exceedance/attainment of the standard, and also seasonality.
particular, he recreation season is from May thru October and poses a higher human health risk (as recreation typically occurs in the summer), therefore it is important to examine the data on a seasonal basis.

6.2 Loading Assessment

Specific *E. coli* data was plotted on load duration curves for each segment to evaluate and identify patterns (Figures 6.2-1 thru 6.2-3). Load assessments were evaluated at the sampling site within each reach with the highest overall *E. coli* geomeans (2003-2014). In general, exceedances that occur in the zero to ten percent area of the flow curve may be considered to represent unique high flow problems that may exceed feasible management remedies (Nevada DEP, 2003). Wet weather events can range from high flows and moist conditions due to severe thunderstorms to lower surface runoff following light rains (Cleland, 2003). For all three reaches, no distinct pattern emerged to identify potential source(s) to be addressed. For any distinct pattern related to seasonal flow influences to be observed, there are load exceedances in particular flow regimes. While the majority of *E. coli* values during the recreation season (May thru Oct) consistently exceed the standard, exceedances occur in both seasons in all flow regimes. Therefore, no distinct pattern could be identified.

Upper Reach

![Big Dry Creek LDC (BDC 1.5), Westminster Gage](image)

Figure 6.2-1 *E. coli* data (2003-2014) for bdc1.5 plotted on load duration curve based on Westminster flow gage.
Figure 6.2-1 E. coli data (2003-2014) for bdc2.0 plotted on load duration curve based on Westminster flow gage.
Figure 6.2-1 E. coli data (2003-2014) for bdc6.0 plotted on load duration curve based on Ft. Lupton flow gage.

7.0 Analysis of Pollutant Sources

7.1 Tributaries and Non-Point E. coli Sources

Historic E. coli data is lacking for tributaries to Big Dry Creek Segment 1. Nonpoint sources of E. coli to segment 1 include agriculture, wildlife, humans, and domesticated animals. Because there is currently no information available to the Division to differentiate between sources of nonpoint E. coli, the Division cannot make those distinctions.

7.2 CDPS Process Water Permits

CDPS process water permits include construction dewatering, groundwater remediation, mining, minimal industrial discharges, water and wastewater treatment, and other permits not falling into the above categories. There are numerous CDPS process water permits that discharge directly to segment 1 or to a stormwater collection system that drains to segment 1.

The CDPS Regulation (WQCC Regulation No. 61) requires the Division to develop permit limitations for any discharged pollutant that causes or contributes to, or that has the reasonable potential to cause or contribute to, an exceedance of water quality standards. The Division has developed a guidance (Determination of the Requirement to Include Water Quality Standards-Based Limits in CDPS Permits Based on Reasonable Potential, Procedural
Guidance, February 2003) to determine a discharge’s reasonable potential to cause or contribute to an exceedance of water quality standards.

There are several CDPS process water permits that discharge to segment 1 that have demonstrated reasonable potential to discharge *E. coli* at a level that may cause or contribute to an exceedance of the *E. coli* water quality standard, which are the City of Broomfield (CDPS permit CO-0026409) and the City of Westminster (CDPS permit CO-0024171). These permits were all renewed in April 2010. The design capacity of the Broomfield Wastewater Treatment Facility is currently 12.0 million gallons per day (MGD) for hydraulic flow (30-day average). The design capacity of the Westminster Wastewater Treatment Facility is currently 11.9 million gallons per day (MGD) for hydraulic flow (30-day average).

Chronic limits are reported as a 30-day average, calculated as geomean, and acute limits are reported as a maximum 7-day average. A summary of discharge data (2011-2015) shows no violations of permit effluent limits. Northglenn discharged to big dry creek only in most recent years (2013-2015).

| Table 7.2-1. Summary of DMR data, most recent 5 years (2011-2015). |
|---------------|---------------|---------------|---------------|
| Facility | Reporting statistic | Max | Min | Geomean |
| Broomfield | Chronic | 21.3 | 1.26 | 4.8 |
| | Acute | 53 | 1.76 | 10.6 |
| Westminster | Chronic | 22 | 3 | 8.8 |
| | Acute | 93 | 5 | 14.5 |
| Northglenn | Chronic | 81.6 | 1 | 7.7 |
| | Acute | 313 | 1 | 15.2 |

7.2.1 Broomfield WWTF

The Broomfield facility currently has pathogen effluent limits for both fecal coliform and *E. coli*. The current *E. coli* permit limit is set to a 30-day average of 205 cfu./100ml and 7-day average maximum concentration of 410 cfu/100ml. The facility uses UV disinfection to treat pathogens and reports *E. coli* at levels below the permitted effluent limits.

7.2.2 Westminster WWTF

Similar to the Broomfield facility, the current *E. coli* permit limit is set to a 30-day average of 205 cfu./100ml; and a 7-day average maximum concentration of 410 cfu/100ml. In addition to changing from chlorination to UV disinfection in 2008, disinfected water which used to be stored in ponds prior to discharge, is now discharged directly to the creek (or to the reclaim plant) rather than being stored in ponds. Ducks and geese were an issue with these ponds, but as a result of the plant upgrades, these ponds are no longer in use. Elevated values in fall of 2007 were likely influenced by construction-related conditions. Currently, the facility discharges at levels below permitted effluent limits.
7.2.3 Northglenn WWTF

The current permit limits reflect the underlying standard of 205 cfu/100 ml as a 30-day average and 410 cfu/100 ml as the 7-day average maximum concentration. Currently, the facility does not discharge at or above permitted effluent limits (Table 7.2-1). Historically, discharges of Northglenn to Big Dry Creek have been rare, only recently (2013) have they consistently been discharging to segment 1.

The City of Northglenn may divert effluent to the Bull Canal and has operated at two different locations over the period of record. Northglenn may discharge treated effluent to Big Dry Creek, Thompson Ditch, or Bull Canal. The plant was upgraded from an aerated lagoon system to a three-stage BNR plant in 2007. Improvements also included new outfalls to Thompson Ditch and Big Dry Creek, located approximately one mile upstream of the historical outfalls. The aerated lagoons remain part of the treatment train.

7.2.4 Municipal Separate Storm Sewer System (MS4) Permits

Under Colorado’s Municipal Separate Storm Sewer (MS4) program, municipalities are authorized to discharge stormwater, discharges authorized under separate CDPS process water permits, and other allowable non-stormwater discharges from their stormwater collection system. Table 7.2.4-1 provides list of phase II, CDPS MS4 permittees within Big Dry Creek drainage, below Standley Lake and Great Western Reservoir (Figure 7.2.4-1). Not all permits listed have stormwater outfalls that discharge directly to Big Dry Creek.

<table>
<thead>
<tr>
<th>CDPS Permit</th>
<th>Permit Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>COR090051</td>
<td>City of Westminster</td>
</tr>
<tr>
<td>COR090054</td>
<td>City of Broomfield</td>
</tr>
<tr>
<td>COR090010</td>
<td>City of Northglenn</td>
</tr>
<tr>
<td>COR090024</td>
<td>Jefferson County</td>
</tr>
<tr>
<td>COR090034</td>
<td>City of Thornton</td>
</tr>
<tr>
<td>COR090041</td>
<td>Adams County</td>
</tr>
<tr>
<td>COR090037</td>
<td>Weld County</td>
</tr>
<tr>
<td>COR090038</td>
<td>Federal Heights</td>
</tr>
</tbody>
</table>

Allowable non-stormwater discharges include:
- landscape irrigation
- lawn watering
- diverted stream flows
- irrigation return flow
- rising ground waters
- uncontaminated ground water infiltration
- uncontaminated pumped ground water
- springs
- flows from riparian habitats and wetlands
- water line flushing
- discharges from potable water sources
• foundation drains
• air conditioning condensation
• water from crawl space pumps
• footing drains
• individual residential car washing
• dechlorinated swimming pool discharges
• street wash water
• discharges or flows from fire fighting activities

Under the MS4 permit, municipalities must implement a program to detect and eliminate other non-stormwater discharges into their drainage or collection system.

The loading of *E. coli* from dry weather flows from stormwater outfalls is considered to be a significant and controllable source through Best Management Practices (BMPs) of *E. coli* to segment 1. Municipalities and facilities with a CDPS MS4 permit are assigned a waste load allocation under this TMDL. Permits are renewed every five years, and the general permit that covers the MS4s in the watershed was last renewed in April 2016.

At present, the only water quality data from stormwater outfalls along Big Dry Creek was collected by the BDCWA in 2007. The data characterized dry weather conditions for a portion of segment 1, from 112th to 128th avenues. This area was identified as the highest priority for several reasons: elevated *E. coli* at instream sample locations BDC1.5 and BDC2.0, open space access, and cooperation with MS4 phase II permit holders Westminster and Broomfield. The results identified one illicit connection upstream of BDC1.5, which was corrected in the summer of 2007.

MS4 coverage areas are based on US census urbanized areas, and city jurisdictional boundaries (Figure 7.2.4-1). Federal heights and Boulder County do not have outfalls discharging directly to Big Dry Creek, and their permit coverage area account for less than 1% of the watershed area. Adams County, Weld County, and Northglenn also do not have outfalls directly to segment 1, and stormwater presumably flows into another MS4 permit coverage area before reaching the creek. There are smaller non-standard MS4s not represented on this map, which include school districts, and are within a phase II MS4 coverage area.
7.3 Other Sources

There are other sources of *E. coli* to segment 1 that are considered to be natural (non-anthropogenic in nature) or nonpoint source pollution. These sources, which include runoff not captured by a stormwater collection system, wildlife, domestic pets, horses, livestock, and humans, are considered a part of the load allocation for this TMDL.
Table 7.2.5-1. Combined land cover areas for all three reaches (does not include area above lakes).

<table>
<thead>
<tr>
<th>NLCD Group</th>
<th>Area (Acres)</th>
<th>Percent of Watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>604.1</td>
<td>1%</td>
</tr>
<tr>
<td>Developed</td>
<td>25365.0</td>
<td>45%</td>
</tr>
<tr>
<td>Barren</td>
<td>104.4</td>
<td>0%</td>
</tr>
<tr>
<td>Forest</td>
<td>101.1</td>
<td>0%</td>
</tr>
<tr>
<td>Shrubland</td>
<td>317.0</td>
<td>1%</td>
</tr>
<tr>
<td>Herbaceous</td>
<td>4133.8</td>
<td>7%</td>
</tr>
<tr>
<td>Planted/Cultivated</td>
<td>23070.1</td>
<td>41%</td>
</tr>
<tr>
<td>Wetlands</td>
<td>2142.0</td>
<td>4%</td>
</tr>
<tr>
<td>Total</td>
<td>55837.4</td>
<td>100%</td>
</tr>
</tbody>
</table>

8.0 TMDL Allocation

TMDL assessments traditionally utilize a mass per time accounting of pollutant sources. However, since *E. coli* sources are non-additive and extremely variable due to both natural and anthropogenic processes in the watershed, and flows in segment 1 fluctuate on a non-seasonal basis due to the intensive water management of the Big Dry system, traditional mass-based load allocations for segment 1 are not the best estimate of the pollutant sources for *E. coli* and their associated contribution to the *E. coli* load in Big Dry Creek. For this TMDL, the WQCD has used density-based load allocations. The load allocations are equivalent to the number of colony forming units per day. The TMDL is divided into load and waste load allocations.

In order to ensure protection of beneficial uses throughout the entire segment, required reductions were calculated based on data collected at sites that exhibited the highest concentrations in comparison with the other monitoring locations within each reach of Big Dry Creek.

TMDLs have been developed, dividing the entire segment into three distinct reaches. The reaches were determined based predominantly on change in land use throughout the segment, as well as impacts to stream flow (tributaries, diversions, WWTF contributions, reservoir releases). The three reaches consist of the upper reach, from the outlet of the Standley Lake to sampling point BDC 1.5; middle reach, from BDC 1.5 to 152nd Ave.; lower reach, 152nd Ave to the confluence with the South Platte River.

A conversion factor (CF) was needed to convert the *E. coli* concentration (cfu/100 mL) to a density-based load (cfu/day). Existing and allowable loads, along with percent reductions to attain standards were calculated using the following equation:

\[
\text{Load \left(\frac{CFU}{\text{day}} \right) = E. coli \ Concentration \left(\frac{CFU}{100 \ mL} \right) \times Flow(cfs) \times Conversion \ Factor}
\]

Where,
Conversions Factors

\[
\text{Conversion Factor} = \frac{1}{100} \times \frac{28317 \text{ mL}}{\text{ft}^3} \times \frac{86400 \text{ sec}}{\text{day}} = 24465888
\]

Allocations for the upper, middle and lower reaches are presented in Tables 8.0-1, 8.0-2 and 8.0-3, respectively. The upper reach is primarily urban, with 77% developed land use, and the highest levels of E. coli in the reach are comparatively lower than levels in the middle and upper reaches. The USGS gage, Big Dry Creek at Westminster, represents the flow in the reach and was used in determining the allowable load. The MS4s were given a WLA, with no other permitted discharges found in the reach to have E. coli as a pollutant of concern. A reserve capacity was also calculated to be distributed to any future dischargers with reasonable potential to exceed the E. coli standard in the upper reach of Big Dry Creek.

<table>
<thead>
<tr>
<th>Loading Calculations (Giga cfu/day)</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL</td>
<td>290.90</td>
<td>80.25</td>
<td>20.06</td>
<td>10.03</td>
<td>6.02</td>
</tr>
<tr>
<td>MOS (10%)</td>
<td>29.09</td>
<td>8.02</td>
<td>2.01</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>WLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS4s</td>
<td>201.59</td>
<td>55.61</td>
<td>13.90</td>
<td>6.95</td>
<td>4.17</td>
</tr>
<tr>
<td>Reserve Capacity</td>
<td>10.08</td>
<td>2.78</td>
<td>0.70</td>
<td>0.35</td>
<td>0.21</td>
</tr>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonpoint Source</td>
<td>50.14</td>
<td>13.83</td>
<td>3.46</td>
<td>1.73</td>
<td>1.04</td>
</tr>
</tbody>
</table>

The middle reach is also primarily urban, 60% developed, showing some transition in predominant land use. This reach has the highest exceedances of the standard in the entire segment. There are also two major WWTFs that discharge to this portion, which do not contribute to the impairment, but have a significant impact on the flow. As previously mentioned in the hydrology portion, this is a highly managed stream, with large amount of water being diverted in and out of Big Dry Creek along the entire segment. This portion being effluent dominant directly impacted how WLAs were determined for the WWTFs. As with the upper reach, a reserve capacity was also calculated for the middle reach, as well as MS4 WLA.
Table 8.0-2. Middle Reach TMDL: allocations for point and nonpoint sources

<table>
<thead>
<tr>
<th>Loading Calculations (Giga-cfu/day)</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL</td>
<td>423.34</td>
<td>198.56</td>
<td>129.18</td>
<td>73.58</td>
<td>27.94</td>
</tr>
<tr>
<td>MOS (10%)</td>
<td>42.33</td>
<td>19.86</td>
<td>12.92</td>
<td>7.36</td>
<td>2.79</td>
</tr>
<tr>
<td>WLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westminster WWTF</td>
<td>58.24</td>
<td>54.32</td>
<td>51.49</td>
<td>31.97</td>
<td>16.99</td>
</tr>
<tr>
<td>Broomfield WWTF</td>
<td>74.20</td>
<td>64.00</td>
<td>57.63</td>
<td>31.58</td>
<td>4.92</td>
</tr>
<tr>
<td>MS4s</td>
<td>149.14</td>
<td>36.23</td>
<td>4.29</td>
<td>1.60</td>
<td>1.94</td>
</tr>
<tr>
<td>Reserve Capacity</td>
<td>7.46</td>
<td>1.81</td>
<td>0.21</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-point Source</td>
<td>91.97</td>
<td>22.34</td>
<td>2.64</td>
<td>0.99</td>
<td>1.19</td>
</tr>
</tbody>
</table>

The lower reach demonstrates the most significant change in land use, being primarily agricultural, and only 12% developed. This reach has nearly as high reductions required as the middle reach, however the implementation of the TMDL to meet the standard relies mainly on nonpoint source reductions. The WLAs were distributed as follows; one WWTF that intermittently discharges to big dry creek; an MS4 allocation; as well as a reserve capacity for any future discharges.

Table 8.0-3. Lower Reach TMDL: allocations for point and nonpoint sources

<table>
<thead>
<tr>
<th>Loading Calculations (Giga cfu/day)</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL</td>
<td>461.43</td>
<td>225.70</td>
<td>150.47</td>
<td>115.36</td>
<td>65.20</td>
</tr>
<tr>
<td>MOS (10%)</td>
<td>46.14</td>
<td>22.57</td>
<td>15.05</td>
<td>11.54</td>
<td>6.52</td>
</tr>
<tr>
<td>WLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northglenn WWTF</td>
<td>50.44</td>
<td>50.44</td>
<td>50.44</td>
<td>50.44</td>
<td>50.44</td>
</tr>
<tr>
<td>MS4s</td>
<td>43.78</td>
<td>18.32</td>
<td>10.20</td>
<td>6.41</td>
<td>0.99</td>
</tr>
<tr>
<td>Reserve Capacity</td>
<td>4.38</td>
<td>1.83</td>
<td>1.02</td>
<td>0.64</td>
<td>0.10</td>
</tr>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonpoint Source</td>
<td>316.68</td>
<td>132.53</td>
<td>73.76</td>
<td>46.33</td>
<td>7.15</td>
</tr>
</tbody>
</table>

8.1 Waste Load Allocation

The waste load allocation contains allocation to permitted point source discharges which include NPDES permitted wastewater facilities and regulated MS4 stormwater discharges. The waste load allocation for the treatment facilities was assigned as the Recreation P E. coli standard of 205 cfu/100 ml. The contribution of MS4 regulated stormwater to the associated waste load allocation was calculated using the percentage of the watershed that is covered by urban areas, which varied depending on the reach. Urban areas were calculated as combined area of four categories of NLCD developed land use: open space, low, medium, and high.
Normally when WLAs are given to WWTFs, they are determined using the facility design capacity and the water quality standard. In this instance, the flow monitoring gages at either end of the stream do not account for the managed flow (ditches and diversions) throughout Big Dry Creek, specifically where the WWTFs discharge. Considerations had to be made in the middle portion to account for the fact the facilities discharge *E. coli* well below the standard, and provide dilution in this part of the stream. The monthly average flow discharges reported in Broomfield and Westminster discharge monitoring reports (DMRs) for the past five years were used to calculate flow duration curves for each facility (EPA, 2016). Similar to the flow duration curves for the stream gages, median flows were calculated for the five different flow regimes. And the WWTF WLAs were calculated as the facility median flows multiplied by the standard (Table 8.1-1). As Northglenn discharges to the lower portion, where flow is greater, their design capacity was used in determining their WLAs.

All of the mentioned WWTFs (Broomfield, Westminster, and Northglenn) with reasonable potential to exceed the standard have adequate treatment in place (UV disinfection) to discharge well below the standard. Therefore, there are no load reductions expected from the WWTFs, and their permit limits set at the standard end-of-pipe are adequate in meeting the TMDL.

<table>
<thead>
<tr>
<th>Table 8.1-1. Calculation of loading for Broomfield and Westminster WWTFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Loading Calculations</td>
</tr>
<tr>
<td>Westminster Median Flow (cfs)</td>
</tr>
<tr>
<td>Westminster Load @ standard (Giga cfu/day)</td>
</tr>
<tr>
<td>Broomfield Median Flow (cfs)</td>
</tr>
<tr>
<td>Broomfield Load @ standard (Giga cfu/day)</td>
</tr>
</tbody>
</table>

The percent of developed landuse was calculated using GIS landuse (NLCD, 2006) and watershed delineation (USGS, 2011) layers for the upper (77%), middle (60%) and lower (12%) portions. For the remaining allowable load, the MS4s were allocated a percent equivalent to the developed urban land use in each portion of Big Dry Creek. The TMDL makes the assumption that the percent of developed landuse equates to the stormwater runoff that is collected and conveyed through the MS4 and discharged to the stream via stormwater outfalls. This assumption accounts for infiltration of stormwater, and supports green infrastructure in the watershed.
8.2 Reserve Capacity

The TMDL assumptions and calculations in this TMDL were based on best available information at the time the TMDL was developed. The TMDL provides a framework for working towards attainment of the E. coli standard for Big Dry Creek. As more accurate source identification data are generated over time, the TMDL may need to be revised. The Reserve Capacity established in this TMDL is intended to provide flexibility with implementation of this TMDL. It takes into account future changes which may include expansion of WWTFs, addition of WWTFs, increase in urbanized area (resulting in change in MS4 permit coverage) or projections that some other nonpoint sources will come into the watershed.

It is anticipated that there will be some growth in the watershed. Projections from the state demographers’ office (CO SDO, 2016) report percent population change by county (Table 8.2-1) and show a significant projected increase in population in Weld County in 20 years. As Weld County makes up a majority of the lower portion, the population growth projections illustrate a need for a reserve capacity in each of the three reaches of Big Dry Creek.

<table>
<thead>
<tr>
<th>County</th>
<th>10 year - % population change</th>
<th>20 year - % population change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weld</td>
<td>36.48%</td>
<td>78.01%</td>
</tr>
<tr>
<td>Adams</td>
<td>19.19%</td>
<td>37.35%</td>
</tr>
<tr>
<td>Broomfield</td>
<td>19.9%</td>
<td>29.88%</td>
</tr>
<tr>
<td>Jefferson</td>
<td>8.32%</td>
<td>13.33%</td>
</tr>
</tbody>
</table>

With urbanized growth in mind, the reserve capacity was based on a percent increase in the MS4 WLA. The upper and middle portions are already highly urbanized, and the reserve capacity accounts for a 5% increase in urbanization. While the lower portion requires accounting for higher, 10% increase. Reserve capacity WLAs for each reach is shown in Tables 8.0-1, 8.0-2 and 8.0-3.

8.3 Load Allocation

The load allocations developed in this TMDL account for the natural background sources of E. coli in addition to the contribution from agriculture (dry land and irrigated crops) and additional nonpoint sources. To achieve the water quality goals of this TMDL, each source must meet its load or waste load allocation. Tables 8.0-1 through 8.0-3 present the pathogen load and waste load allocations proposed for Big Dry Creek Segment 1. After the WLAs were given to the point sources, the remaining load was determined to be the load allocation.

8.4 Margin of Safety

According to the Federal Clean Water Act, TMDLs require a margin of safety (MOS) component that accounts for the uncertainty about the relationship between the pollutant loads and the receiving waterbody. This MOS is included to account for the uncertainty in the analysis of the relationship between the TMDL loading allocations and the desired water quality target.

A MOS can be either implicit or explicit. Implicit MOS are incorporated into the TMDL analysis through conservative assumptions, and explicit MOS can be expressed in the TMDL as a portion
of the loadings. This TMDL uses both an explicit and an implicit MOS. An implicit MOS considered appropriate because the standard was used to calculate the WLAs for the facilities, when in fact they are discharging well below the standard.

In addition to an implicit margin of safety, a ten percent (10%) explicit margin of safety was added to account for any uncertainties within the TMDL development process. While there is ample instream data throughout the impaired reach, there is only one year of dry weather outfall monitoring to determine MS4 contributions.

8.5 Examples of Load Reductions

E. coli levels instream oscillate with natural die off and diurnal fluctuations. Also, flows in segment 1 fluctuate dramatically on a non-seasonal basis due to water diversions and upstream reservoir releases. Thus it is difficult to determine a load reduction that is a fixed number. A conservative approach of showing loading reductions needed to attain the standard in each reach is used (Tables 8.3-1-8.3-3). This is an example of the reductions necessary for the entire segment. Reductions for each monitoring location can similarly be calculated. Determining reductions for each stormwater outfall, however, is more difficult. As only dry weather outfall monitoring was completed during the recreation season (Apr-Oct) in 2007, specific outfall loading and reductions cannot be determined based on this limited data set.

Reductions are calculated using the allowable and existing load. Where the observed geomean does not exceed the standard, the existing load is less than the allowable load, and no reductions are required. This can be seen in the high and mid-range flows in the upper reach (Table 8.3-1).
Table 8.3-1. Upper Reach: Allowable loading and required reductions.

<table>
<thead>
<tr>
<th>Loading Calculations</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Flow (cfs)</td>
<td>58</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>WQS, TMDL Target (cfu/100mL)</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>Observed Geomean @ BDC 1.5 (cfu/100mL)</td>
<td>165</td>
<td>319</td>
<td>171</td>
<td>208</td>
<td>428</td>
</tr>
<tr>
<td>Allowable Load, TMDL w/ MOS (Giga cfu/day)</td>
<td>261.81</td>
<td>72.22</td>
<td>18.06</td>
<td>9.03</td>
<td>5.42</td>
</tr>
<tr>
<td>Existing Load @ BDC 1.5 (Giga cfu/day)</td>
<td>234.61</td>
<td>124.74</td>
<td>16.69</td>
<td>10.18</td>
<td>12.56</td>
</tr>
<tr>
<td>Required Reduction (%)</td>
<td>0%</td>
<td>42%</td>
<td>0%</td>
<td>11%</td>
<td>57%</td>
</tr>
</tbody>
</table>

Table 8.3-2. Middle Reach: Allowable loading and required reductions.

<table>
<thead>
<tr>
<th>Loading Calculations</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Flow (cfs)</td>
<td>84.4</td>
<td>39.6</td>
<td>25.8</td>
<td>14.7</td>
<td>5.6</td>
</tr>
<tr>
<td>WQS, TMDL Target (cfu/100mL)</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>Observed Geomean @ BDC 2.0 (cfu/100mL)</td>
<td>542</td>
<td>439</td>
<td>387</td>
<td>319</td>
<td>697</td>
</tr>
<tr>
<td>Allowable Load, TMDL w/ MOS (Giga cfu/day)</td>
<td>381.01</td>
<td>178.71</td>
<td>116.26</td>
<td>66.22</td>
<td>25.14</td>
</tr>
<tr>
<td>Existing Load @ BDC 2.0 (Giga cfu/day)</td>
<td>1119.13</td>
<td>425.48</td>
<td>244.05</td>
<td>114.49</td>
<td>94.98</td>
</tr>
<tr>
<td>Required Reduction (%)</td>
<td>66%</td>
<td>58%</td>
<td>52%</td>
<td>42%</td>
<td>74%</td>
</tr>
</tbody>
</table>
Table 8.3-3. Lower Reach: Allowable loading and required reductions.

<table>
<thead>
<tr>
<th>Loading Calculations</th>
<th>High Flow</th>
<th>Moist Conditions</th>
<th>Mid-Range Flows</th>
<th>Dry Conditions</th>
<th>Low Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Flow (cfs)</td>
<td>92</td>
<td>45</td>
<td>30</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>WQS, TMDL Target (cfu/100mL)</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>Observed Geomean @ BDC 6.0 (cfu/100mL)</td>
<td>747.33</td>
<td>562.74</td>
<td>349.20</td>
<td>239.29</td>
<td>442.71</td>
</tr>
<tr>
<td>Allowable Load, TMDL w/ MOS (cfu/day)</td>
<td>415.28</td>
<td>225.70</td>
<td>150.47</td>
<td>115.36</td>
<td>65.20</td>
</tr>
<tr>
<td>Existing Load @ BDC 6.0 (cfu/day)</td>
<td>1682.14</td>
<td>619.55</td>
<td>256.30</td>
<td>134.65</td>
<td>140.81</td>
</tr>
<tr>
<td>Required Reduction (%)</td>
<td>75%</td>
<td>64%</td>
<td>41%</td>
<td>14%</td>
<td>54%</td>
</tr>
</tbody>
</table>

9.0 Implementation

Implementation of this TMDL will be an iterative process involving the CDPS permittees that discharge to segment 1 and other nonpoint source pollution programs. The CDPS permitted domestic wastewater treatment facilities that with elevated *E. coli* levels in their effluent discharge have already been addressed. The effluent limits for *E. coli* are equal to the water quality standard (205 cfu/100mL), although the facilities discharge well below this according to submitted discharge monitoring data. Further reductions from these facilities are unnecessary at this time. While these sources have been addressed, other controls are necessary to achieve full restoration of the waterbody.

The approach for the MS4 sources is more complex. Currently all MS4 permits in the watershed are phase II and require a stormwater management program to reduce discharge of pollutants to the maximum extent practicable (MEP) to protect water quality (WQCC 2015b). There are minimum control measures already required in their permits, which include: public education and outreach; public involvement/participation; illicit discharge detection and elimination; construction site stormwater runoff control; post-construction stormwater management in new development and redevelopment; pollution prevention/good housekeeping for municipal operations. The division may include more stringent limitations based on a TMDL that determines such limitations are needed to protect water quality. Additional requirements will be necessary for the MS4 permits identified in this TMDL (WQCC 2015b).
In compliance with Regulation 61, the division cannot issue a permit that allows discharges that cause or have the potential to cause an exceedance of a numeric water quality standard unless the permit contains effluent limitations and a schedule of compliance specifying treatment requirements. Therefore, the WQCD must issue permits that contain effluent limits for those MS4s with illicit dry weather discharges identified as being in excess of the TMDL allocations. However, Regulation 61 allows the effluent limit to consist of best management practices (BMPs) to ensure protection of the water quality standard when numeric effluent limits are infeasible, or when practices are reasonably necessary to achieve effluent limits or standards.

9.1 Recommended Actions

Implementation of the TMDL through the coordinated efforts of the Big Dry Creek Watershed Association is encouraged, given that the most effective strategies for pollutant load reductions require integration among entities with land draining to Big Dry Creek. However, each permit will have its own clear, specific and measurable requirements. Implementation actions include, but are not limited to, the following: additional monitoring; infrastructure maintenance and upgrades; education and outreach; and stormwater BMPs.

The assumptions and calculation in this TMDL were based on best available information at the time the TMDL was developed. More accurate source identification could support revisions to loading calculations and/or TMDL allocations. This would include targeted flow monitoring and water quality data from dry weather stormwater outfalls. The basis for determining the potential to contribute to an exceedance of the water quality standard would be outfall data that exceeds the density based TMDL. Activities to expand source identification of nonpoint source loading may include development of GIS layers to identify directional storm drainage flow. Also, expand current illicit discharge detection and elimination monitoring programs to ensure human sources of \(E. coli \) in the system are addressed. Activities such as camera scoping and dye study to identify leaking infrastructure, and lining pipes in prioritized areas, may be necessary.

Each MS4 permit currently has its own education and outreach program; however, it is recommended that a collective effort is made through BDCWA to identify cross jurisdictional efforts to target specific public awareness that would help reduce the \(E. coli \) load in segment 1. Examples may include expansion of educational programs involving pet waste management or incentives to encourage proper irrigation and landscaping to reduce runoff. In addition to these nonstructural BMPs, structural BMPs may be needed to reduce the effects of urban developments on stormwater.

9.2 Post-Implementation Monitoring

The Division will continue to work with stakeholders, such as the BDCWA, to maintain and improve the current level of sampling on the segment. MS4s in the segment would be required to collect dry-weather based outfall-monitoring data to determine if dry weather discharges exist that could exceed the density based TMDL.

9.3 TMDL Endpoint

The endpoint of this TMDL will be attainment of the \(E. coli \) water quality standard using the WQCC’s approved 303(d) Listing Methodology.
10.0 Public Involvement

The Big Dry Creek watershed association formed in 1997, and has done extensive work in the watershed. The association consists of City and County of Broomfield, City of Northglenn, City of Westminster, Adams Co., and Weld Co. Several studies have been conducted since its origination, as well as regular monitoring at several instream locations along big dry creek.

The Division was an active member of the Water Quality Forum $E. coli$ work group (2007-2010), and has initiated discussions with the group about the development of $E. coli$ TMDLs, including Big Dry Creek Segment 1. Several meetings were attended by the association, the division, and EPA, to discuss TMDL development in detail. The most recent meetings occurred February and April 2016. The steps taken in the TMDL process have been outlined by the division. This TMDL was noticed for 30-day public comment on June 13, 2016.

11.0 References

Colorado Department of Public Health and Environment (2016). *Regulation 93 - Section 303(D) List Water-Quality-Limited Segments Requiring TMDLs.* Water Quality Control Commission, effective 03/01/16. (WQCC, 2016a)

http://igs.indiana.edu/survey/projects/greatmarsh/index.cfm

Nevada Division of Environmental Protection. April 2003. Load Duration Curve Methodology for Assessment and TMDL Development. (Nevada DEP, 2003)

APPENDIX A

A.1 Routine Instream Monitoring Data

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>bdc 0.5 (cfu/100 ml)</th>
<th>bdc 1.0 (cfu/100 ml)</th>
<th>bdc 1.5 (cfu/100 ml)</th>
<th>bdc 2.0 (cfu/100 ml)</th>
<th>bdc 3.0 (cfu/100 ml)</th>
<th>bdc 4.0 (cfu/100 ml)</th>
<th>bdc 4.5 (cfu/100 ml)</th>
<th>bdc 5.0 (cfu/100 ml)</th>
<th>bdc 6.0 (cfu/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/13/2000</td>
<td>1454</td>
<td>76</td>
<td>176</td>
<td>106</td>
<td>116</td>
<td>172</td>
<td></td>
<td>133</td>
<td>413</td>
</tr>
<tr>
<td>5/11/2000</td>
<td>28</td>
<td>86</td>
<td>219</td>
<td>144</td>
<td>107</td>
<td>192</td>
<td></td>
<td>199</td>
<td>240</td>
</tr>
<tr>
<td>6/8/2000</td>
<td>114</td>
<td>290</td>
<td>517</td>
<td>548</td>
<td>240</td>
<td>649</td>
<td></td>
<td>119</td>
<td>250</td>
</tr>
<tr>
<td>8/10/2000</td>
<td>435</td>
<td>387</td>
<td>461</td>
<td>1553</td>
<td>613</td>
<td>816</td>
<td></td>
<td>272</td>
<td>481</td>
</tr>
<tr>
<td>9/14/2000</td>
<td>1046</td>
<td>687</td>
<td>1414</td>
<td></td>
<td>649</td>
<td>687</td>
<td></td>
<td>687</td>
<td>411</td>
</tr>
<tr>
<td>10/12/2000</td>
<td>138</td>
<td>276</td>
<td>1120</td>
<td>1120</td>
<td>308</td>
<td>816</td>
<td></td>
<td>326</td>
<td>435</td>
</tr>
<tr>
<td>11/16/2000</td>
<td>66</td>
<td>83</td>
<td>104</td>
<td>387</td>
<td>157</td>
<td>308</td>
<td></td>
<td>68</td>
<td>115</td>
</tr>
<tr>
<td>12/21/2000</td>
<td>23</td>
<td>345</td>
<td>2419</td>
<td>980</td>
<td>1298</td>
<td></td>
<td></td>
<td>308</td>
<td>488</td>
</tr>
<tr>
<td>1/18/2001</td>
<td>3</td>
<td>14</td>
<td>172</td>
<td>39</td>
<td>727</td>
<td></td>
<td></td>
<td>197</td>
<td>648</td>
</tr>
<tr>
<td>2/15/2001</td>
<td>14</td>
<td>82</td>
<td>547</td>
<td>326</td>
<td>179</td>
<td></td>
<td></td>
<td>435</td>
<td>866</td>
</tr>
<tr>
<td>3/8/2001</td>
<td>96</td>
<td>24</td>
<td>50</td>
<td>1553</td>
<td>249</td>
<td>238</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>4/19/2001</td>
<td>160</td>
<td>19</td>
<td>488</td>
<td>172</td>
<td>82</td>
<td>102</td>
<td></td>
<td>105</td>
<td>135</td>
</tr>
<tr>
<td>5/10/2001</td>
<td>921</td>
<td>687</td>
<td>291</td>
<td>411</td>
<td>461</td>
<td>580</td>
<td></td>
<td>435</td>
<td>517</td>
</tr>
<tr>
<td>6/14/2001</td>
<td>153</td>
<td>629</td>
<td>755</td>
<td>721</td>
<td>689</td>
<td>2419.2</td>
<td></td>
<td>2419.2</td>
<td>2419.2</td>
</tr>
<tr>
<td>7/12/2001</td>
<td>1986</td>
<td>2419.2</td>
<td>2419.2</td>
<td>2419.2</td>
<td>1733</td>
<td>2419</td>
<td></td>
<td>2419.2</td>
<td>2419.2</td>
</tr>
<tr>
<td>8/9/2001</td>
<td>435</td>
<td>579</td>
<td>517</td>
<td>980</td>
<td>547</td>
<td></td>
<td></td>
<td>345</td>
<td>1046</td>
</tr>
<tr>
<td>9/13/2001</td>
<td>921</td>
<td>548</td>
<td>579</td>
<td>517</td>
<td>435</td>
<td>548</td>
<td></td>
<td>435</td>
<td>517</td>
</tr>
<tr>
<td>10/11/2001</td>
<td>385</td>
<td>517</td>
<td>1120</td>
<td>2419.2</td>
<td>816</td>
<td>1046</td>
<td></td>
<td>517</td>
<td>461</td>
</tr>
<tr>
<td>11/8/2001</td>
<td>2419.2</td>
<td>866</td>
<td>980</td>
<td>2419.2</td>
<td>2419.2</td>
<td>1986</td>
<td></td>
<td>1553</td>
<td>649</td>
</tr>
<tr>
<td>12/13/2001</td>
<td>12</td>
<td>200</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/17/2002</td>
<td>11</td>
<td>172</td>
<td>291</td>
<td>108</td>
<td>120</td>
<td></td>
<td></td>
<td>78</td>
<td>99</td>
</tr>
<tr>
<td>2/14/2002</td>
<td>12</td>
<td>70</td>
<td>326</td>
<td>140</td>
<td>199</td>
<td></td>
<td></td>
<td>62</td>
<td>517</td>
</tr>
<tr>
<td>3/14/2002</td>
<td>147</td>
<td>236</td>
<td>66</td>
<td>866</td>
<td>687</td>
<td>308</td>
<td></td>
<td>51</td>
<td>93</td>
</tr>
<tr>
<td>5/9/2002</td>
<td>770</td>
<td>411</td>
<td>1300</td>
<td>727</td>
<td>122</td>
<td>161</td>
<td></td>
<td>411</td>
<td>980</td>
</tr>
<tr>
<td>6/20/2002</td>
<td>1553</td>
<td>1414</td>
<td>1046</td>
<td>1046</td>
<td>1203</td>
<td>240</td>
<td></td>
<td>488</td>
<td>435</td>
</tr>
<tr>
<td>7/11/2002</td>
<td>2419</td>
<td>2419.2</td>
<td>2419.2</td>
<td>2419.2</td>
<td>2419.2</td>
<td>2419.2</td>
<td></td>
<td>2419.2</td>
<td>2419.2</td>
</tr>
<tr>
<td>8/5/2002</td>
<td>488</td>
<td>727</td>
<td>2419.2</td>
<td>1203</td>
<td>649</td>
<td>1203</td>
<td></td>
<td>308</td>
<td>326</td>
</tr>
<tr>
<td>9/12/2002</td>
<td>1986</td>
<td>2419</td>
<td>2419.2</td>
<td>2419</td>
<td>1733</td>
<td>1553</td>
<td></td>
<td>1986</td>
<td>1300</td>
</tr>
<tr>
<td>10/10/2002</td>
<td>435</td>
<td>153</td>
<td>687</td>
<td>770</td>
<td>579</td>
<td>517</td>
<td></td>
<td>1046</td>
<td>435</td>
</tr>
<tr>
<td>11/14/2002</td>
<td>2419</td>
<td>52</td>
<td>66</td>
<td>2419.2</td>
<td>816</td>
<td>387</td>
<td></td>
<td>387</td>
<td>866</td>
</tr>
<tr>
<td>12/12/2002</td>
<td>91</td>
<td>2419.2</td>
<td>2419.2</td>
<td>2419.2</td>
<td></td>
<td>2419.2</td>
<td></td>
<td>2419.2</td>
<td>2419.2</td>
</tr>
<tr>
<td>2/6/2003</td>
<td>24</td>
<td>17</td>
<td>308</td>
<td>162</td>
<td></td>
<td>248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/13/2003</td>
<td>70</td>
<td>16</td>
<td>1046</td>
<td>326</td>
<td>10</td>
<td></td>
<td></td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>2/20/2003</td>
<td>31</td>
<td>16</td>
<td>152</td>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>2/27/2003</td>
<td>18</td>
<td>57</td>
<td>980</td>
<td>292</td>
<td></td>
<td></td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>3/6/2003</td>
<td>105</td>
<td>816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>bdc 0.5 (cfu/100 ml)</td>
<td>bdc 1.0 (cfu/100 ml)</td>
<td>bdc 1.5 (cfu/100 ml)</td>
<td>bdc 2.0 (cfu/100 ml)</td>
<td>bdc 3.0 (cfu/100 ml)</td>
<td>bdc 4.0 (cfu/100 ml)</td>
<td>bdc 4.5 (cfu/100 ml)</td>
<td>bdc 5.0 (cfu/100 ml)</td>
<td>bdc 6.0 (cfu/100 ml)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>3/13/2003</td>
<td>13</td>
<td>13</td>
<td>102</td>
<td>548</td>
<td>122</td>
<td>15</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/3/2003</td>
<td>77</td>
<td>33</td>
<td>114</td>
<td>50</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/9/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/17/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/24/2003</td>
<td>1986</td>
<td></td>
<td></td>
<td>1414</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8/2003</td>
<td>328</td>
<td>99</td>
<td>158</td>
<td>126</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/14/2003</td>
<td>659</td>
<td>147</td>
<td>99</td>
<td>344</td>
<td>91</td>
<td>866</td>
<td>260</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>5/22/2003</td>
<td>1413</td>
<td>921</td>
<td>1120</td>
<td>980</td>
<td>1011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/29/2003</td>
<td>501</td>
<td>961</td>
<td>961</td>
<td>914</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/5/2003</td>
<td>205</td>
<td>517</td>
<td>488</td>
<td>517</td>
<td>866</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/12/2003</td>
<td>185</td>
<td>866</td>
<td>1203</td>
<td>687</td>
<td>517</td>
<td>162</td>
<td>365</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>6/19/2003</td>
<td>184</td>
<td></td>
<td></td>
<td>1414</td>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/26/2003</td>
<td>102</td>
<td></td>
<td></td>
<td>649</td>
<td></td>
<td>345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/3/2003</td>
<td>980</td>
<td></td>
<td></td>
<td>687</td>
<td>308</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/17/2003</td>
<td>411</td>
<td>980</td>
<td>687</td>
<td>980</td>
<td>921</td>
<td>579</td>
<td>435</td>
<td>816</td>
<td></td>
</tr>
<tr>
<td>7/24/2003</td>
<td>727</td>
<td>770</td>
<td>770</td>
<td>816</td>
<td>687</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/31/2003</td>
<td>248</td>
<td>921</td>
<td>921</td>
<td>387</td>
<td>1733</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/7/2003</td>
<td>517</td>
<td>727</td>
<td>770</td>
<td>199</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/14/2003</td>
<td>365</td>
<td>687</td>
<td>461</td>
<td>1120</td>
<td>201</td>
<td>579</td>
<td>1300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/21/2003</td>
<td>162</td>
<td>548</td>
<td>649</td>
<td>461</td>
<td>816</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/28/2003</td>
<td>649</td>
<td></td>
<td></td>
<td>172</td>
<td>980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/3/2003</td>
<td>225</td>
<td>265</td>
<td>240</td>
<td>161</td>
<td>613</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/11/2003</td>
<td>206</td>
<td>613</td>
<td>613</td>
<td>816</td>
<td>1300</td>
<td>291</td>
<td>866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/18/2003</td>
<td>1300</td>
<td></td>
<td></td>
<td>517</td>
<td>461</td>
<td>517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/2/2003</td>
<td>548</td>
<td>317</td>
<td>980</td>
<td>411</td>
<td></td>
<td>330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/9/2003</td>
<td>178</td>
<td>488</td>
<td>1046</td>
<td>866</td>
<td>387</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/16/2003</td>
<td>206</td>
<td>50</td>
<td>308</td>
<td>866</td>
<td>613</td>
<td>192</td>
<td>291</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>10/23/2003</td>
<td>50</td>
<td>166</td>
<td>866</td>
<td></td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/30/2003</td>
<td>147</td>
<td>687</td>
<td>579</td>
<td>461</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/6/2003</td>
<td>107</td>
<td>135</td>
<td>231</td>
<td>148</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/13/2003</td>
<td>166</td>
<td>178</td>
<td>93</td>
<td>488</td>
<td>178</td>
<td>218</td>
<td>140</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>11/20/2003</td>
<td>166</td>
<td>140</td>
<td>517</td>
<td>166</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/4/2003</td>
<td>76</td>
<td>1733</td>
<td>240</td>
<td>579</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/11/2003</td>
<td>345</td>
<td>130</td>
<td>184</td>
<td>435</td>
<td>172</td>
<td>144</td>
<td>236</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>12/18/2003</td>
<td>156</td>
<td>65</td>
<td>275</td>
<td>214</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8/2004</td>
<td>1203</td>
<td>108</td>
<td>613</td>
<td>488</td>
<td>148</td>
<td>86</td>
<td>178</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>1/15/2004</td>
<td>45</td>
<td>50</td>
<td>770</td>
<td>291</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/22/2004</td>
<td>64</td>
<td>126</td>
<td>84</td>
<td></td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/28/2004</td>
<td>308</td>
<td>54</td>
<td>199</td>
<td>411</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/19/2004</td>
<td>111</td>
<td>29</td>
<td>43</td>
<td>109</td>
<td>70</td>
<td>86</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>bdc 0.5 (cfu/100 ml)</td>
<td>bdc 1.0 (cfu/100 ml)</td>
<td>bdc 1.5 (cfu/100 ml)</td>
<td>bdc 2.0 (cfu/100 ml)</td>
<td>bdc 3.0 (cfu/100 ml)</td>
<td>bdc 4.0 (cfu/100 ml)</td>
<td>bdc 4.5 (cfu/100 ml)</td>
<td>bdc 5.0 (cfu/100 ml)</td>
<td>bdc 6.0 (cfu/100 ml)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>3/11/2004</td>
<td>104</td>
<td>12</td>
<td>110</td>
<td>111</td>
<td>32</td>
<td>43</td>
<td>58</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>5/12/2004</td>
<td>547</td>
<td>240</td>
<td>249</td>
<td>178</td>
<td>190</td>
<td>156</td>
<td>150</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>6/10/2004</td>
<td>1300</td>
<td>2419</td>
<td>1986</td>
<td>1986</td>
<td>1203</td>
<td>1732</td>
<td>2419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8/2004</td>
<td>436</td>
<td>461</td>
<td>461</td>
<td>613</td>
<td>436</td>
<td>219</td>
<td>201</td>
<td>1046</td>
<td></td>
</tr>
<tr>
<td>8/12/2004</td>
<td>435</td>
<td>1046</td>
<td>687</td>
<td>816</td>
<td>649</td>
<td>461</td>
<td>649</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>9/9/2004</td>
<td>259</td>
<td>488</td>
<td>547</td>
<td>547</td>
<td>238</td>
<td>142</td>
<td>150</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>10/14/2004</td>
<td>1120</td>
<td>1986</td>
<td>1203</td>
<td>1733</td>
<td>770</td>
<td>1120</td>
<td>1046</td>
<td>1120</td>
<td></td>
</tr>
<tr>
<td>11/10/2004</td>
<td>20</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>60</td>
<td>200</td>
<td>320</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>12/9/2004</td>
<td>110</td>
<td>20</td>
<td>20</td>
<td>140</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1/20/2005</td>
<td>25</td>
<td>3</td>
<td>14</td>
<td>50</td>
<td>170</td>
<td>13</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2/10/2005</td>
<td>38</td>
<td>1</td>
<td>21</td>
<td>44</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>3/17/2005</td>
<td>96</td>
<td>8</td>
<td>38</td>
<td>41</td>
<td>19</td>
<td>7</td>
<td>14</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4/21/2005</td>
<td>1986</td>
<td>1120</td>
<td>1120</td>
<td>816</td>
<td>687</td>
<td>1414</td>
<td>1120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/12/2005</td>
<td>1203</td>
<td>548</td>
<td>921</td>
<td>980</td>
<td>727</td>
<td>770</td>
<td>1203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/14/2005</td>
<td>488</td>
<td>613</td>
<td>1553</td>
<td>1986</td>
<td>579</td>
<td>248</td>
<td>365</td>
<td>866</td>
<td></td>
</tr>
<tr>
<td>8/18/2005</td>
<td>365</td>
<td>613</td>
<td>1553</td>
<td>517</td>
<td>155</td>
<td>225</td>
<td>435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/15/2005</td>
<td>281</td>
<td>365</td>
<td>1986</td>
<td>1300</td>
<td>727</td>
<td>770</td>
<td>1733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/18/2005</td>
<td>126</td>
<td>517</td>
<td>326</td>
<td>225</td>
<td>240</td>
<td>222</td>
<td>345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/10/2005</td>
<td>79</td>
<td>770</td>
<td>326</td>
<td>307</td>
<td>222</td>
<td>40</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/8/2005</td>
<td>9</td>
<td>18</td>
<td>52</td>
<td>158</td>
<td>75</td>
<td>44</td>
<td>75</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>1/12/2006</td>
<td>2</td>
<td>22</td>
<td>105</td>
<td>199</td>
<td>81</td>
<td>16</td>
<td>32</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2/9/2006</td>
<td>96</td>
<td>34</td>
<td>260</td>
<td>48</td>
<td>29</td>
<td>41</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/13/2006</td>
<td>31</td>
<td>308</td>
<td>276</td>
<td>109</td>
<td>162</td>
<td>44</td>
<td>75</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>5/11/2006</td>
<td>28</td>
<td>126</td>
<td>192</td>
<td>147</td>
<td>88</td>
<td>53</td>
<td>67</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>6/15/2006</td>
<td>365</td>
<td>866</td>
<td>2419</td>
<td>816</td>
<td>770</td>
<td>816</td>
<td>547</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>7/13/2006</td>
<td>517</td>
<td>1733</td>
<td>1733</td>
<td>649</td>
<td>517</td>
<td>727</td>
<td>727</td>
<td>1046</td>
<td></td>
</tr>
<tr>
<td>8/10/2006</td>
<td>206</td>
<td>866</td>
<td>1120</td>
<td>980</td>
<td>921</td>
<td>261</td>
<td>547</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>9/14/2006</td>
<td>225</td>
<td>275</td>
<td>325</td>
<td>365</td>
<td>345</td>
<td>261</td>
<td>261</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>10/19/2006</td>
<td>816</td>
<td>488</td>
<td>579</td>
<td>687</td>
<td>517</td>
<td>1046</td>
<td>727</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>11/16/2006</td>
<td>33</td>
<td>52</td>
<td>275</td>
<td>275</td>
<td>118</td>
<td>179</td>
<td>387</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>12/14/2006</td>
<td>48</td>
<td>54</td>
<td>22</td>
<td>153</td>
<td>132</td>
<td>261</td>
<td>62</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>1/10/2007</td>
<td>20</td>
<td>20</td>
<td>133</td>
<td>68</td>
<td>96</td>
<td>126</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8/2007</td>
<td>260</td>
<td>60</td>
<td>88</td>
<td>178</td>
<td>148</td>
<td>184</td>
<td>192</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>3/15/2007</td>
<td>33</td>
<td>64</td>
<td>236</td>
<td>114</td>
<td>57</td>
<td>105</td>
<td>70</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>4/12/2007</td>
<td>27</td>
<td>54</td>
<td>56</td>
<td>64</td>
<td>43</td>
<td>26</td>
<td>11</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>5/10/2007</td>
<td>93</td>
<td>108</td>
<td>365</td>
<td>96</td>
<td>96</td>
<td>79</td>
<td>79</td>
<td>1733</td>
<td></td>
</tr>
<tr>
<td>6/14/2007</td>
<td>435</td>
<td>1300</td>
<td>1300</td>
<td>1414</td>
<td>687</td>
<td>727</td>
<td>687</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>7/12/2007</td>
<td>517</td>
<td>1986</td>
<td>1986</td>
<td>1414</td>
<td>1733</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>bdc 0.5 (cfu/100 ml)</td>
<td>bdc 1.0 (cfu/100 ml)</td>
<td>bdc 1.5 (cfu/100 ml)</td>
<td>bdc 2.0 (cfu/100 ml)</td>
<td>bdc 3.0 (cfu/100 ml)</td>
<td>bdc 4.0 (cfu/100 ml)</td>
<td>bdc 4.5 (cfu/100 ml)</td>
<td>bdc 5.0 (cfu/100 ml)</td>
<td>bdc 6.0 (cfu/100 ml)</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>8/9/2007</td>
<td>1120</td>
<td>921</td>
<td>411</td>
<td>1203</td>
<td>308</td>
<td>387</td>
<td>326</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>9/13/2007</td>
<td>517</td>
<td>214</td>
<td>345</td>
<td>308</td>
<td>308</td>
<td>387</td>
<td>222</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>10/11/2007</td>
<td>866</td>
<td>488</td>
<td>276</td>
<td>579</td>
<td>1120</td>
<td>488</td>
<td>866</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>11/8/2007</td>
<td>126</td>
<td>49</td>
<td>84</td>
<td>345</td>
<td>365</td>
<td>225</td>
<td>155</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>12/13/2007</td>
<td>54</td>
<td>88</td>
<td></td>
<td>248</td>
<td>291</td>
<td></td>
<td>156</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>1/10/2008</td>
<td></td>
<td></td>
<td></td>
<td>308</td>
<td>517</td>
<td>613</td>
<td>326</td>
<td>166</td>
<td>185</td>
</tr>
<tr>
<td>2/21/2008</td>
<td>29</td>
<td>63</td>
<td>73</td>
<td>54</td>
<td>96</td>
<td></td>
<td>68</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>3/13/2008</td>
<td>55</td>
<td>24</td>
<td>38</td>
<td>75</td>
<td>178</td>
<td>81</td>
<td>66</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>4/17/2008</td>
<td>1203</td>
<td>167</td>
<td>170</td>
<td>205</td>
<td>145</td>
<td>78</td>
<td>172</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>5/8/2008</td>
<td>365</td>
<td>461</td>
<td>816</td>
<td>921</td>
<td>866</td>
<td>866</td>
<td>1300</td>
<td>1414</td>
<td></td>
</tr>
<tr>
<td>6/19/2008</td>
<td>687</td>
<td>816</td>
<td>488</td>
<td>980</td>
<td>649</td>
<td>2419</td>
<td>1986</td>
<td>2419</td>
<td></td>
</tr>
<tr>
<td>7/17/2008</td>
<td>687</td>
<td>2419</td>
<td>1986</td>
<td>2419</td>
<td>2419</td>
<td>1553</td>
<td>435</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>8/14/2008</td>
<td>866</td>
<td>133</td>
<td>308</td>
<td>816</td>
<td>687</td>
<td>387</td>
<td>461</td>
<td>1203</td>
<td></td>
</tr>
<tr>
<td>9/11/2008</td>
<td>980</td>
<td>387</td>
<td>517</td>
<td>488</td>
<td>579</td>
<td>1203</td>
<td>687</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>10/9/2008</td>
<td>517</td>
<td>260</td>
<td>579</td>
<td>687</td>
<td>921</td>
<td>548</td>
<td>225</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>11/13/2008</td>
<td>50</td>
<td>9</td>
<td>96</td>
<td>387</td>
<td>461</td>
<td>248</td>
<td>133</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>12/11/2008</td>
<td>64</td>
<td>150</td>
<td>461</td>
<td>261</td>
<td>196</td>
<td></td>
<td>236</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>1/8/2009</td>
<td>12</td>
<td>115</td>
<td>291</td>
<td>365</td>
<td>187</td>
<td></td>
<td>127</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>2/12/2009</td>
<td>18</td>
<td>26</td>
<td>71</td>
<td>93</td>
<td>52</td>
<td></td>
<td>16</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>3/12/2009</td>
<td>18</td>
<td>52</td>
<td>56</td>
<td>77</td>
<td>117</td>
<td>34</td>
<td>31</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>4/9/2009</td>
<td>23</td>
<td>19</td>
<td>36</td>
<td>35</td>
<td>86</td>
<td>44</td>
<td>35</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5/14/2009</td>
<td>1120</td>
<td>120</td>
<td>411</td>
<td>210</td>
<td>115</td>
<td>96</td>
<td>67</td>
<td>2419</td>
<td></td>
</tr>
<tr>
<td>6/18/2009</td>
<td>488</td>
<td>517</td>
<td>649</td>
<td>461</td>
<td>365</td>
<td>248</td>
<td>435</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>7/9/2009</td>
<td>411</td>
<td>488</td>
<td>1046</td>
<td>756</td>
<td>1046</td>
<td>1046</td>
<td>921</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>8/13/2009</td>
<td>118</td>
<td>196</td>
<td>308</td>
<td>276</td>
<td>178</td>
<td>102</td>
<td>461</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>9/10/2009</td>
<td>119</td>
<td>276</td>
<td>178</td>
<td>326</td>
<td>548</td>
<td>119</td>
<td>727</td>
<td>866</td>
<td></td>
</tr>
<tr>
<td>10/15/2009</td>
<td>7</td>
<td>17</td>
<td>152</td>
<td>387</td>
<td>345</td>
<td>161</td>
<td>127</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>11/12/2009</td>
<td>21</td>
<td>4</td>
<td>135</td>
<td>155</td>
<td>345</td>
<td>194</td>
<td>204</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>12/10/2009</td>
<td>55</td>
<td>276</td>
<td>365</td>
<td>308</td>
<td></td>
<td>201</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/14/2010</td>
<td>32</td>
<td>517</td>
<td>345</td>
<td>225</td>
<td></td>
<td>147</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/11/2010</td>
<td>29</td>
<td>613</td>
<td>285</td>
<td>116</td>
<td></td>
<td>49</td>
<td>387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/11/2010</td>
<td>6</td>
<td>29</td>
<td>14</td>
<td>248</td>
<td>93</td>
<td>31</td>
<td>19</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>4/8/2010</td>
<td>31</td>
<td>219</td>
<td>20</td>
<td>40</td>
<td>52</td>
<td>40</td>
<td>64</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>5/13/2010</td>
<td>687</td>
<td>366</td>
<td>580</td>
<td>462</td>
<td>308</td>
<td>462</td>
<td>548</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>6/10/2010</td>
<td>326</td>
<td>326</td>
<td>649</td>
<td>1554</td>
<td>518</td>
<td>313</td>
<td>548</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>7/8/2010</td>
<td>1120</td>
<td>2419</td>
<td>2419</td>
<td>2419</td>
<td>1987</td>
<td>2419</td>
<td>2419</td>
<td>2419</td>
<td></td>
</tr>
<tr>
<td>8/12/2010</td>
<td>166</td>
<td>345</td>
<td>921</td>
<td>436</td>
<td>326</td>
<td>489</td>
<td>687</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>9/9/2010</td>
<td>72</td>
<td>128</td>
<td>366</td>
<td>817</td>
<td>1414</td>
<td>326</td>
<td>225</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>10/14/2010</td>
<td>250</td>
<td>250</td>
<td>1204</td>
<td>1047</td>
<td>687</td>
<td>1204</td>
<td>1120</td>
<td>981</td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>bdc 0.5 (cfu/100 ml)</td>
<td>bdc 1.0 (cfu/100 ml)</td>
<td>bdc 1.5 (cfu/100 ml)</td>
<td>bdc 2.0 (cfu/100 ml)</td>
<td>bdc 3.0 (cfu/100 ml)</td>
<td>bdc 4.0 (cfu/100 ml)</td>
<td>bdc 4.5 (cfu/100 ml)</td>
<td>bdc 5.0 (cfu/100 ml)</td>
<td>bdc 6.0 (cfu/100 ml)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>11/4/2010</td>
<td>68</td>
<td>70</td>
<td>366</td>
<td>388</td>
<td>462</td>
<td>489</td>
<td>152</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>12/9/2010</td>
<td>30</td>
<td>46</td>
<td>76</td>
<td>388</td>
<td>366</td>
<td>215</td>
<td>192</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>1/13/2011</td>
<td></td>
<td></td>
<td>1120</td>
<td>366</td>
<td>436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/10/2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>614</td>
<td>462</td>
<td>462</td>
<td>273</td>
</tr>
<tr>
<td>3/10/2011</td>
<td>12</td>
<td>7</td>
<td>24</td>
<td>88</td>
<td>196</td>
<td>119</td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>4/20/2011</td>
<td>1</td>
<td>111</td>
<td>152</td>
<td>105</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/12/2011</td>
<td>2420</td>
<td>1300</td>
<td>1733</td>
<td>1300</td>
<td>1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/9/2011</td>
<td>866</td>
<td>2420</td>
<td>2420</td>
<td>2420</td>
<td>921</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/14/2011</td>
<td>162</td>
<td>1046</td>
<td>727</td>
<td>1046</td>
<td>649</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/4/2011</td>
<td>78</td>
<td>461</td>
<td>240</td>
<td>649</td>
<td>1046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/8/2011</td>
<td>9</td>
<td>649</td>
<td>727</td>
<td>1203</td>
<td>921</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/13/2011</td>
<td>179</td>
<td>50</td>
<td>214</td>
<td>687</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/10/2011</td>
<td>35</td>
<td>44</td>
<td>57</td>
<td>326</td>
<td>411</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/8/2011</td>
<td></td>
<td></td>
<td>517</td>
<td>921</td>
<td>687</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/12/2012</td>
<td></td>
<td></td>
<td>157</td>
<td>980</td>
<td>613</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/9/2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1046</td>
<td>260</td>
<td>236</td>
<td>140</td>
</tr>
<tr>
<td>3/8/2012</td>
<td>21</td>
<td>29</td>
<td>23</td>
<td>91</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/12/2012</td>
<td>1733</td>
<td>1414</td>
<td>2419</td>
<td>1414</td>
<td>1553</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/10/2012</td>
<td>179</td>
<td>1987</td>
<td>106</td>
<td>152</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/14/2012</td>
<td>366</td>
<td>649</td>
<td>291</td>
<td>489</td>
<td>1047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/12/2012</td>
<td>138</td>
<td>580</td>
<td>489</td>
<td>345</td>
<td>366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/9/2012</td>
<td>111</td>
<td>326</td>
<td>980</td>
<td>649</td>
<td>687</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/13/2012</td>
<td>2420</td>
<td>2420</td>
<td>1987</td>
<td>2420</td>
<td>2420</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/11/2012</td>
<td>981</td>
<td>236</td>
<td>269</td>
<td>436</td>
<td>867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/8/2012</td>
<td>80</td>
<td>43</td>
<td>102</td>
<td>518</td>
<td>727</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/13/2012</td>
<td>52</td>
<td>614</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10/2013</td>
<td></td>
<td></td>
<td>1554</td>
<td>921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/14/2013</td>
<td>115</td>
<td>461</td>
<td>488</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/14/2013</td>
<td>84</td>
<td>40</td>
<td>47</td>
<td>130</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/11/2013</td>
<td>199</td>
<td>51</td>
<td>816</td>
<td>44</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/9/2013</td>
<td>548</td>
<td>435</td>
<td>387</td>
<td>387</td>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/13/2013</td>
<td>236</td>
<td>816</td>
<td>727</td>
<td>866</td>
<td>1413</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/11/2013</td>
<td>613</td>
<td>613</td>
<td>613</td>
<td>517</td>
<td>613</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/8/2013</td>
<td>816</td>
<td>0</td>
<td>727</td>
<td>579</td>
<td>980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/26/2013</td>
<td>291</td>
<td>548</td>
<td>365</td>
<td>326</td>
<td>411</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/26/2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/10/2013</td>
<td>179</td>
<td>50</td>
<td>214</td>
<td>687</td>
<td>770</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/14/2013</td>
<td>46</td>
<td>32</td>
<td>70</td>
<td>166</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/12/2013</td>
<td>435</td>
<td>1046</td>
<td>921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Date</td>
<td>bdc 0.5 (cfu/100 ml)</td>
<td>bdc 1.0 (cfu/100 ml)</td>
<td>bdc 1.5 (cfu/100 ml)</td>
<td>bdc 2.0 (cfu/100 ml)</td>
<td>bdc 3.0 (cfu/100 ml)</td>
<td>bdc 4.0 (cfu/100 ml)</td>
<td>bdc 4.5 (cfu/100 ml)</td>
<td>bdc 5.0 (cfu/100 ml)</td>
<td>bdc 6.0 (cfu/100 ml)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1/8/2014</td>
<td>517</td>
<td>1203</td>
<td>548</td>
<td>435</td>
<td>435</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9/2014</td>
<td>518</td>
<td>1204</td>
<td>548</td>
<td>436</td>
<td>436</td>
<td>></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/13/2014</td>
<td>105</td>
<td>249</td>
<td>326</td>
<td>411</td>
<td>179</td>
<td>981</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/13/2014</td>
<td>45</td>
<td>69</td>
<td>35</td>
<td>123</td>
<td>99</td>
<td>45</td>
<td>></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/10/2014</td>
<td>42</td>
<td>326</td>
<td>64</td>
<td>42</td>
<td>104</td>
<td>52</td>
<td>72</td>
<td>2420</td>
<td></td>
</tr>
<tr>
<td>6/12/2014</td>
<td>152</td>
<td>167</td>
<td>276</td>
<td>416</td>
<td>366</td>
<td>345</td>
<td>308</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>7/10/2014</td>
<td>99</td>
<td>345</td>
<td>548</td>
<td>649</td>
<td>345</td>
<td>980</td>
<td>365</td>
<td>1553</td>
<td></td>
</tr>
<tr>
<td>8/14/2014</td>
<td>135</td>
<td>365</td>
<td>387</td>
<td>548</td>
<td>727</td>
<td>461</td>
<td>308</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>9/11/2014</td>
<td>866</td>
<td>1300</td>
<td>1046</td>
<td>866</td>
<td>1300</td>
<td>1300</td>
<td>1553</td>
<td>1553</td>
<td></td>
</tr>
<tr>
<td>10/9/2014</td>
<td>365</td>
<td>167</td>
<td>980</td>
<td>214</td>
<td>687</td>
<td>548</td>
<td>411</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>11/19/2014</td>
<td>40</td>
<td>308</td>
<td>687</td>
<td>403</td>
<td>866</td>
<td>276</td>
<td>345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/11/2014</td>
<td>99</td>
<td>128</td>
<td>173</td>
<td>291</td>
<td>613</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>