Appendix E – Worksheets for Major Sources of PM10, NOx and SO2

# Regulation No. 1

# Particulates, Smokes, Carbon Monoxide and Sulfur Oxides

# Colorado Air Quality Control Commission



- Fort Carson shall maintain records of each fog oil smoke generation exercise which shall include:
  - a. observations from the designated observer(s) regarding the drift of the fog oil smoke only when said smoke approaches the Installation or Site boundary to the extent that all generation must cease to prevent visible emissions from crossing the boundary;
  - b. the amount of fog oil used in gal/day;
  - c. the general location at which the fog oil smoke was generated; and
  - d. the date and duration of the fog oil smoke generation; and
- For purposes of this section, fog oil is defined as highly refined (hydrotreated) virgin oil.

The Commanding General in charge of Fort Carson shall be responsible for ensuring that no drift of smoke from fog oil generation or other obscurant use occurs across the boundary of the military reservations, even if generated in accordance with this section.

### III. PARTICULATES

- A. Fuel Burning Equipment
  - No owner or operator shall cause or permit to be emitted into the atmosphere from any fuel-burning equipment, particulate matter in the flue gases which exceeds the following:
    - a. 0.5 lbs. per 10<sup>6</sup> BTU heat input for fuel burning equipment of less than or equal to 1x10<sup>6</sup> BTU/hr. total heat input design capacity.
    - b. For fuel burning equipment with designed heat inputs greater than Ix10<sup>6</sup> BTU per hour, but less than or equal to 500x10<sup>6</sup> BTU per hour, the following equation will be used to determine the allowable particulate emission limitation.

PE=0.5(FI)-0.26

Where:

PE = Particulate Emission in Pounds per million BTU heat input.

FI = Fuel Input in Million BTU per hour.

 0.1 lbs. per 10<sup>6</sup> BTU heat input for fuel burning equipment of greater than 500x10<sup>6</sup> BTU per hour or more.

d. If two or more fuel burning units connect to any opening, the maximum allowable emission rate shall be calculated by summing the allowable emissions from the units being operated.

### 2. Exceptions

Sources and emissions subject to the emission limitation of Section  $\,{\rm V.}\,$  of this regulation.

### 3. Performance Tests

Prior to granting of a final approval permit or amending a permit, when an emission source or control equipment is altered, or at any time when there is reason to believe that emission standards are being violated, the Division may require the owner or operator of any fuel burning equipment to conduct performance tests, as measured by EPA Methods 1-4 and the front half of EPA Method 5 (40 CFR 60.275, Appendix A, Part 60) to determine compliance with this subsection of this regulation.

### B. Incinerators

- No owner or operator of an incinerator shall operate any incinerator without a permit from the Division.
- Standard of Performance for all incinerators other than biomedical waste incinerators.
  - In areas designated as nonattainment for particulate matter, no owner or operator of an incinerator shall cause or permit emissions of more than 0.10 grain of particulate matter per standard cubic foot. (Dry flue gas corrected to 12 percent carbon dioxide.)
  - In areas designated as attainment for particulate matter, no owner or operator of an incinerator shall cause or permit emissions of more than 0.15 grain of particulate matter per standard cubic foot. (Dry Flue gas corrected to 12 percent carbon dioxide.)

### 3. Performance Tests

Prior to granting a final approval permit or amending a permit, when an emission source or control equipment is altered, or at any time when there is reason to believe that emission standards are being violated, the Division may require the owner or operator of an incinerator to conduct performance tests(s) in accordance with Appendix A of Air Quality Control Commission Regulation Number 6.

4. Standard of Performance for Biomedical Waste Incinerators.

The owner or operator of an existing incinerator used for the disposal of biomedical waste shall comply with Regulation No. 6, Part B. V. Standard of Performance For New Biomedical Waste Incinerators as follows:

- All incinerators, existing as of the effective date of Regulation 6 Part B, V., with a design capacity of 400 pounds per hour and greater must comply with the requirements of this regulation by January 1, 1990.
- b. All incinerators, existing as of the effective date of Regulation 6, Part B, V., with a design capacity of less than 400 pounds per hour must comply with the requirements of this regulation as applicable by December 31, 1994; except incinerators with a design capacity of less than 200 pounds per hour shall be permitted and allowed to operate only so long as the units continue to meet the particulate and visible emission standards existing prior to the effective date of Regulation 6, Part B.V., the manufacturer's design specifications and any other applicable safety standards. (The standards existing prior to the effective date of this regulation are: a) For sources existing prior to January 30, 1979: 20% opacity and 0.10 grains of particulate matter (PM) for particulate matter non-attainment areas and 0.15 grains of PM for PM attainment areas; b) 20% opacity and 0.10 grains of PM for sources constructed after January 30, 1979.)

### C. Manufacturing Processes

- Except as provided in paragraphs 2 and 3 of this subsection C., no owner or operator of a manufacturing process unit shall cause or permit emission of any particulate matter into the atmosphere during any consecutive sixty (60) minute period which is in excess of the following.
  - a. For process equipment having process weight rates of 30 tons per hour or less, the allowable emission rate shall be determined by the use of the equation:

 $PE = 3.59(P)^{0.62}$ 

Where:

PE = Particulate Emission in lbs. per hour

P = Process weight rate in tons per hour

b. For process equipment having process weight rates of greater than 30 tons per hour, the allowable emission rate shall be determined by use of the equation:

 $PE = 17.31(P)^{0.16}$ 

Where:

PE = Particulate Emission rate in lbs. per hour

P = Process weight rate in tons per hour

- c. If two or more process units are connected to the same opening, the maximum allowable emission rate shall be computed by summing the allowable emissions for the units being operated.
- 2. Alfalfa Dehydration Plant Drum Dryers

New alfalfa dehydration plants shall be subject to the provisions of III.C. of this regulation for process weight rates.

- 3. Exceptions
  - Sources and emissions subject to the emission limitations of Section
     V. of this regulation.
  - Fugitive dust and fugitive particulate emissions as defined in Section II.A.8 of this Regulation.
- 4. Performance Tests: prior to granting of a final approval permit or amending a permit, when an emission source or control equipment is altered, or at any time when there is reason to believe that emission standards are being violated, the Division may require the owner or operator of any manufacturing process to conduct performance tests, as measured by EPA Methods 1-4 and the front half of EPA Method 5 (40 CFR 60.275, Appendix A, Part 60) to determine compliance with this subsection of this regulation.
- D. Fugitive Particulate Emissions
  - General Requirements
    - a. Existing Sources
      - (i) Every owner or operator of a source or activity which is subject to this Section III.D. shall employ such control measures and operating procedures as are necessary to minimize fugitive particulate emissions into the atmosphere through the use of all available practical methods which are technologically feasible and economically reasonable and which reduce, prevent and control emissions so as to facilitate the achievement of the maximum practical degree of air purity in every portion of the State.
      - (ii) In determining what control methods are available, practical, economically reasonable and technologically feasible, the following factors shall be considered: effects on the health, welfare (as defined in Section I.G. of the Common Provisions regulation), convenience, and comfort of the inhabitants of the

(A) For process equipment having process weight rates of up to thirty (30) tons per hour, the allowable emission rate shall be determined by the use of the equation:

 $PE = 3.59(P)^{0.62}$ 

Where:

PE = Particulate emission in lbs. per hour

P = Process weight rate in ton per hour

(B) For process equipment having process weight rates of greater than thirty (30) tons per hour, the allowable emission rate shall be determined by use of the equation:

 $PE = 17.31(P)^{0.16}$ 

Where:

PE = Particulate emission rate in lbs. per hour

P = Process weight rate in tons per hour

- (C) If two or more process units are connected to the same opening, the maximum allowable emission rate shall be computed by summing the individual emissions rates.
- (ii) Performance Tests

Prior to granting or amending a permit, when an emission source or control equipment is altered, or at any time when there is reason to believe that emission standards are being violated, the Division may require the owner or operator of an existing manufacturing process to conduct performance test(s) as measured by EPA Methods (1-4) and the front half of EPA Method 5 (40 CFR 60.275, Appendix A, Part 60) as may be amended to determine compliance with this subsection of this regulation.

- G. A statement of the basis and purpose for the revisions to this Section V., adopted March 11, 1982 is hereby incorporated by reference, and a copy of the statement is available from the Air Quality Control Commission office.
- VI. SULFUR DIOXIDE EMISSION REGULATIONS

- A. Sources constructed or modified prior to August 11, 1977 shall be considered an existing source. All existing sources of sulfur dioxide emissions, except for sources listed in Section VII, shall comply with the following:
  - Averaging time Unless otherwise specified in other sections of this
    regulation, the averaging time for all sulfur dioxide emissions standards for
    sources which utilize a CEM shall be a three hour rolling average and the
    frequency of fuel sampling for sources which utilize a fuel sampling plan
    approved pursuant to Section IV.B.2. shall be as specified in such plan.
  - If the sum of sulfur dioxide emission rates for all sources located on a contiguous site is less than three (3) tons per day potential uncontrolled SO<sub>2</sub> emissions, and if all Federal and State Ambient Air Quality Standards are met no process based SO<sub>2</sub> emission standard shall apply.
  - Existing sources of sulfur dioxide shall not emit sulfur dioxide in excess of the following process-specific limitations. (Heat input rates shall be the manufacturer's guaranteed maximum heat input rates).
    - a. Coal-fired operations including coal-fired steam generation:

(These standards are also applicable to the use of coal-based by-product fuels.)

- (i) Units with a heat input from coal or coal-based by-product fuels of less than 300 million BTU per hour:
  - 1.8 pounds of sulfur dioxide per million BTU of heat input.
- (ii) Units with a heat input from coal or coal-based by-product fuels equal to or greater than 300 million BTU per hour:
  - 1.2 pounds of sulfur dioxide per million BTU of heat input.
- b. Oil-fired Operations Including Oil-Fired Steam Generation
  - (i) Units with a heat input from oil of less than 300 million BTU per hour:
    - 1.5 pounds of sulfur dioxide per million BTU of heating input.
  - (ii) Units with a heat input from oil equal to or greater than 300 million BTU per hour:

0.8 pounds of sulfur dioxide per million BTU of heating input.

### c. Combustion Turbines

(i) Combustion Turbines with a heat input of less than 300 million BTU per hour:

1.2 pounds of sulfur dioxide per million BTU of heating input.

(ii) Combustion Turbines with a heat input equal to or greater than 300 million BTU per hour:

0.8 pounds of sulfur dioxide per million BTU of heating input.

### d. Natural Gas Desulfurization

Desulfurization Plants emitting more than five (5) tons of sulfur dioxide per day:

2 pounds of sulfur dioxide per 1,000 cubic feet of (Actual) delivered gas.

### e. Petroleum Refining

0.7 pounds sulfur dioxide for the sum of all SO2 emissions from a given Refinery, per barrel of oil processed, per day. This emission limit shall be calculated over each 24 hour period which commences at midnight. If the refinery does not operate for the entire 24 hour period, the actual hours of operation shall be used as the averaging time. At no time shall the averaging time be greater than 24 hours. Refineries in operation on or before August 1, 1995, which are covered by this regulation, shall submit a plan for Division approval no later than February 1, 1996. Sources constructed after August 1, 1995 shall submit a plan for Division approval along with construction permit applications. The plan shall define how compliance with this limitation will be demonstrated. This plan shall address both how the SO<sub>2</sub> value is calculated, i.e. mass balance, monitors, and how the barrels of oil processed value is derived, taking into account intermediate storage. The Division shall not limit the determination of barrels processed per day to a 24 hour period.

All data used to show compliance with this emission standard shall be maintained by the owner or operator of the affected source for a period of two (2) years for sources that are not subject to the operating permit program, and five (5) years for sources that are subject to the operating permit program. This data shall be available for inspection by the Division upon request.

### f. Cement Manufacture

abrogate the Commission's or Division's authority to require testing under Article 7 of Title 25, Colorado Revised Statute 1973, and regulations of the Commission promulgated thereunder.

- 3. The owner or operator of an affected facility shall provide the Division thirty (30) days prior notice of the performance test to afford the Division the opportunity to have an observer present.
- E. Related Compounds Containing Sulfur in Oxidized States:
  - For the purposes of this regulation, all oxidized forms of sulfur (including, but not restricted to sulfur trioxide (SO<sub>3</sub>), trionyl chloride (SOCl<sub>2</sub>), and sulfuric acid mist (H<sub>2</sub>SO<sub>4</sub>)) shall be considered as sulfur dioxide.
  - Quantities of such oxidized sulfur compounds shall be converted on a molar basis to an equivalent quantity of sulfur dioxide. The total of all such quantities, (expressed in parts per million by volume sulfur-dioxide-equivalents of other oxidized forms) shall be interpreted as "parts per million by volume sulfur dioxide" as used in Section B. above.
- F. Alternative Compliance Procedures
  - 1. Any person may apply to the Division Director for approval of an alternative:
    - a. Test method.
    - b. Method of control,
    - c. Compliance period,
    - d. Emission limit, or
    - e. Monitoring schedule.
  - The application shall include a demonstration that the proposed alternative produces:
    - An equal or greater air quality benefit than that required in this subsection VI, or
    - b. The alternative test method is equivalent to that required by these regulations.
  - The Division Director shall obtain concurrence from EPA prior to approving an alternative.
- VII. EMISSION REGULATIONS FOR CERTAIN ELECTRIC GENERATING STATIONS OWNED AND OPERATED BY THE PUBLIC SERVICE COMPANY OF COLORADO

- A. The electric generating stations owned and operated by the Public Service Company of Colorado listed below shall not emit or cause to be emitted nitrogen oxides ( $NO_x$ ) or sulfur dioxide ( $SO_2$ ) in excess of the following limits. The emission rates for  $NO_x$  and  $SO_2$  are measure in terms of pounds of pollutant per million British Thermal Units of fuel fired in the unit (Ib/mmBTU).
  - Cherokee Electric Generating Station, 6198 North Franklin Street, Denver,
    CO

|        | NO <sub>x</sub><br>(lb/mmBTU) | SO₂<br>(lb/mmBTU) |
|--------|-------------------------------|-------------------|
| Unit 1 | -                             | 1.1               |
| Unit 2 | •                             | 1.1               |
| Unit 3 | 0.60                          | 1.1               |
| Unit 4 | 0.45                          | 1.1               |

- The NO<sub>x</sub> limit will be calculated based on a 30-day rolling average, and is effective November 1, 1994.
- The SO<sub>2</sub> limit will be calculated as a three-hour rolling average, and is effective November 1, 1994.
- Public Service Company of Colorado shall install, certify and operate continuous emission monitoring equipment for measuring opacity,  $SO_2$ ,  $NO_X$ , and either  $O_2$  or  $CO_2$  on Units 1, 2, 3 and 4 no later than January 1, 1995.
- Arapahoe Electric Generating Station, 2601 South Platte River Drive, Denver, CO

|        | NO <sub>x</sub><br>(lb/mmBTU) | SO₂<br>(lb/mmBTU)                       |
|--------|-------------------------------|-----------------------------------------|
| Unit 1 | -                             | 1.1                                     |
| Unit 2 |                               | 1.1                                     |
| Unit 3 | -                             | 1.1                                     |
| Unit 4 | .60                           | 1.1<br>+20% annual tonnage<br>reduction |

- The  ${\rm NO}_{\rm X}$  limit will be calculated based on a 30-day rolling average, and is effective November 1, 1994.
- The SO<sub>2</sub> limit will be calculated as a three-hour rolling average, and is effective January 1, 1995.

- The 20% SO<sub>2</sub> limit from Unit 4 shall be calculated on a calendar year, total annual tonnage basis. SO<sub>2</sub> removal Equipment shall be continuously operated from November 1 to March 1 of each year, except during periods of upset conditions or because of unavoidable circumstances that render the equipment inoperable. If at any time between November 1 and March 1 of any year the equipment is not operated for a period of 24 hours or longer, Public Service Company of Colorado shall report the event to the Division in accordance with the Common Provisions Regulation.
- Public Service Company of Colorado shall install, certify and operate continuous emission monitoring equipment for measuring opacity, SO<sub>2</sub>, NO<sub>x</sub>, and either O<sub>2</sub> or CO<sub>2</sub> on Units 1, 2, 3 and 4 no later than January 1, 1995.
- 3. Valmont Electric Generating Station, 1800 North 63rd Street, Boulder, CO

|        | NO <sub>x</sub><br>(lb/mmBTU) | SO <sub>2</sub><br>(lb/mmBTU) |
|--------|-------------------------------|-------------------------------|
| Unit 5 | 0.45                          | 1.1                           |

- The  ${\rm NO_{x}}$  limit will be calculated based on a 30-day rolling average, and is effective November 1, 1994.
- The SO<sub>2</sub> limit will be calculated as a three-hour rolling average, and is effective November 1, 1994.
- Public Service Company of Colorado shall install, certify and operate continuous emission monitoring equipment for measuring opacity, SO<sub>2</sub>, NO<sub>x</sub>, and either O<sub>2</sub> or CO<sub>2</sub> on Units 1, 2, 3 and 4 no later than January 1, 1995.
- B. Public Service Company of Colorado shall submit to the Division for approval, no later than June 30, 1994, the procedure to be used for the measurement and calculation of the emission averages and emission reductions from these electric generating stations.
- VIII. RESTRICTIONS ON THE USE OF OIL AS A BACKUP FUEL

### A. Applicability

The provisions of this section are applicable to all points at the following stationary sources in the Denver PM10 nonattainment area that use oil as a backup fuel for natural gas, which is the primary process fuel:

- 1. Public Service Company of Colorado, Zuni Electric Generating Station;
- 2. Public Service Company of Colorado, Valmont Electric Generating Station;
- 3. Public Service Company of Colorado, Delgany Steam Generating Station;
- Fitzsimmons Army Medical Center;

- 5. US Department of Energy, Rocky Flats Plant;
- 6. Gates Rubber Company; and
- 7. Coors Brewing Company, Coors Brewery, Golden, CO.

### B. Requirements

Beginning November 1, 1993, natural gas shall be the only fuel used from November 1 to March 1 of each year, except under the following circumstances:

- the supplier of transporter or natural gas imposes a curtailment or an interruption of service;
- for necessary testing of equipment used to operate the unit on oil, testing of fuel and training of personnel; or
- when an equipment malfunction at the facility makes it impossible or unsafe for the unit to operate on natural gas.

### C. Recordkeeping

Each stationary source subject to the provisions shall maintain records for a period of two years which include the following information:

- 1. dates and number of hours fuel oil is burned;
- 2. percent sulfur analysis of the fuel oil that is burned;
- 3. number of gallons burned each day; and
- 4. reason(s) for the use of the fuel oil.

### D. Reporting

Beginning April 1, 1994 and by April 1 of each year thereafter, each stationary source subject to these provisions shall submit to the division a report containing the information listed in Section VIII.C.

### E. Alternate Recordkeeping and Reporting

Where the information required under subsections C and D above is otherwise made available to the Division, for example in EIS reports submitted by the source or pursuant to operating permit requirements, the requirements of subsections C and D of this Section VIII are satisfied.

IX. EMISSION REGULATIONS CONCERNING AREAS WHICH ARE NONATTAINMENT FOR CARBON MONOXIDE - REFINERY FLUID BED CATALYTIC CRACKING UNITS:

# Appendix E.2 T5 Emission Factors

2002 Maximum Allowable Emissions Major NOx, SO2 & PM10 Sources

| Source            | Maximum Operation | ration |             |                   |       | 802                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOX              | ×                |                     |                             |                     | PM10             |                                     |                  |
|-------------------|-------------------|--------|-------------|-------------------|-------|--------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|---------------------|-----------------------------|---------------------|------------------|-------------------------------------|------------------|
|                   | Design Rate       |        |             |                   | _     | Emission  <br>Rate | Emission<br>Rate | Emission<br>Rate | Emission Emi | Emission<br>Rate | Emission<br>Rate | Emission<br>Rate    | Reg. 1<br>Emission<br>Limit | Fraction<br>PM10 of | Emission<br>Rate | Emission Emission<br>Rate Rate Rate | Emission<br>Rate |
| herokee           | mmBtu/hr          | hryr   | ton/lb      | ton/lb   lb/mmBtu | (%)   | ᆌ                  |                  | (tons/day)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٦                |                  | (tons/day) Ib/mmBtu | Ib/mmBtu                    | M.                  | =                |                                     | (tons/day)       |
| Unit 1            | 1392              | 8760   | 0.0005      |                   | 20    |                    | 1,225            | 14.7             | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,853            | 1336             | 16.0                | 0.1                         | 0.92                |                  | 128                                 |                  |
| Unit 2            | 1392              | 8760   | 0.0005      |                   | o     |                    | 1,531            | 18.4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1336             | 16.0                |                             | 0.92                |                  |                                     |                  |
| Unit 3            | 1877              | 8760   | 8760 0.0005 | -                 | ö     |                    | 2,065            | 24.8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1126             | 13.5                |                             | 0.92                |                  |                                     |                  |
| Unit 4            | 3520              | 8760   | 8760 0.0005 | 1.                | 20    | 13,567             | 3,098            | 37.2             | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,938            | 1584             | 19.0                |                             | 0.92                |                  |                                     | 3.9              |
| TOTAL             |                   |        |             | •••••             |       |                    | 7,918            | 95.0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23,577           | 5,383            | 64.6                |                             |                     | 3,297            |                                     |                  |
| Aranahoo          |                   |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     |                  |                                     |                  |
| Arabanos          |                   |        |             |                   |       | ı                  |                  | ۱                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             | 0                   |                  | 1                                   |                  |
| Jnit 1            | 754.8             | 8760   | 0.0005      | -                 | Ö     |                    | 830              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,240            | 740              | 8.9                 |                             | 0.67                |                  |                                     |                  |
| Unit 2            | 754.8             | 8760   | 0.0005      | -                 | 0     |                    | 830              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,240            | 740              | 8.9                 |                             | 0.67                |                  |                                     | 9.0              |
| Unit 3            | 754.8             | 8760   | 0.0005      |                   | 0     |                    | 830              |                  | 86.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,240            | 740              | 8.9                 | 0.1                         | 0.92                |                  | 69                                  |                  |
| Unit 4            | 1709.0            | 8760   | 0.0005      |                   | 20    | 6,587              | 1,504            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,491            | 1025             | 12.3                |                             | 0.92                |                  |                                     | 1.9              |
| 2 Turbines (2002) |                   | 8760   | 0.0005      | ••••              |       | 0.5*               | 0.4              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39*              | 62               | 0.7                 |                             |                     | <b>&amp;</b>     |                                     |                  |
| TOTAL             |                   |        |             |                   |       | 17,498             | 3,995            | 47.9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14,250           | 3,307            | 39.7                |                             |                     | 1,444            | 334                                 | 4                |
| Valmont           |                   |        | ļ           |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     |                  |                                     |                  |
| Jult 5            | 1845              | 8760   | 0.0005      | 1.1               | Ö     | 8.889              | 2.030            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 830              |                     |                             |                     |                  |                                     |                  |
| Unit 6            | 920               | 8760   | 0.0005      | 0.0               |       | _                  | 0                | 0.0              | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 799              | 182              | 2.2                 |                             |                     |                  |                                     |                  |
| 2 Turbine (2002)  |                   | 8760   | 0.0005      |                   |       | 0.5                | 0.4              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 9                |                     |                             |                     |                  |                                     |                  |
| TOTAL             |                   |        |             |                   | ••••• | 8,891              | 2,030            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,474            | 1,074            |                     |                             |                     |                  |                                     |                  |
| Trigen            |                   |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     |                  |                                     |                  |
| Boiler 1 (gas)    | 288               | 8760   | 0.0005      | 9000'0            |       | 1                  | 0                | 0.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 81               | 1.0                 |                             |                     | 139              |                                     |                  |
| Boiler 2 (gas)    | 288               | 8760   | 0.0005      | 9000:0            |       |                    | 0                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353              | 8                | 1.0                 |                             |                     | 139              |                                     |                  |
| Boiler 3          | 225               | 8760   | 0.0005      | 1.8               |       | 1,774              | 405              |                  | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 88               | 1.1                 | 0.12                        | •                   | 118              | 27                                  | 0.3              |
| Boiler 4          | 360               | 8760   | 0.0005      | 1.2               |       | 1,892              | 432              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 252              | 3.0                 |                             | -                   | 158              |                                     |                  |
| Boiler 5          | 650               | 8760   |             | 1.2               |       | 3,416              | 780              | 4.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,993            | 455              | 5.5                 |                             | _                   | <br>282          |                                     |                  |
| SIP reduction     |                   |        | 0.0005      |                   | ••••• | -125               | 67.              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 677.             | <u>ب</u>         | 9.0                 |                             |                     | ŝ                |                                     |                  |
| Pochy Men Bottle  |                   |        |             |                   |       | 60,40              | 600              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,302            | COR              | 6.01                |                             |                     | 200              | l                                   |                  |
| ochy man Doule    |                   |        | I           | Ī                 | Ī     | . 000              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100              | 200              | ,                   |                             |                     |                  |                                     |                  |
| PIE by stack test |                   |        |             | •••••             |       | 698                | 2 %              | 1.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 424              | 26               | 2. 6.               |                             |                     |                  |                                     |                  |
| Conoco Refinery   | Barrels/day       |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             | b/barrel Em Factor  |                  |                                     |                  |
| -ccu**            | 20,000            | 8760   | 0.0005      |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | 0.051                       |                     | 185.4            |                                     |                  |
| See attachment    |                   | 8760   | 0.0005      |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     | 4                | 6                                   | 0.1              |
| TOTAL             |                   |        |             |                   |       | ****               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     |                  |                                     |                  |
| UDS Refinery      | lb Coke/hr        |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | Ib/Ib Coke Em. Factor       | Em. Factor          |                  |                                     |                  |
| -ccu***           | 5,789             | 8760   | 0.0005      |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | 0.00788                     |                     | 200              |                                     |                  |
| See attachment    |                   | 8760   | 0.0005      |                   |       | *****              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     | 45               | <b>б</b>                            | 0.1              |
| TOTAL             |                   |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     | 241              |                                     |                  |
| Robinson Brick    | Design Rate       |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | Ibs PM/hr                   |                     |                  |                                     |                  |
| Rotary Dryer      | 35/Tons/Hr.       | 8760   | 0.0005      |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | 30.57                       |                     | 32               | 7                                   | 0.1              |
| Tunnel Dryer (2)  | Reg. 1 Limit      | 8760   | 0.0005      |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | 17.9                        | -                   |                  |                                     |                  |
| Rotary Calciner   | 10 Tons/Hr        | 8760   | 0.0005      |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     | 14.97                       |                     |                  |                                     |                  |
| TOTAL             |                   |        |             |                   |       |                    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                     |                             |                     | 186              |                                     |                  |

TOTAL

\*\*Amutal Permit Limits, ple emissions nodeled at maximum hourly emissions rate

\*\*\*Amutal Permit Limits, per emissions nodeled at maximum hourly emissions rate late. PM10/1000 barrels and total ple emissions calculation by source

\*\*\*Total ple emissions calculation by Source

NOTE: This revision includes pte calculations for Cherokee 1-2, Arapahoe 1-3, Trigen 3 and RMB for NOx and RMB for SO2. Also, addition of Valmont 6.

2003 Maximum Allowable Emissions Major NOx, SO2 & PM10 Sources

| Source                  | Maximum Operation | tion  |             |          |         | 802    |            |                  |          | Š        | ×                                                  |                  |                             |                       | PM10             |                                              |            |
|-------------------------|-------------------|-------|-------------|----------|---------|--------|------------|------------------|----------|----------|----------------------------------------------------|------------------|-----------------------------|-----------------------|------------------|----------------------------------------------|------------|
|                         | Design Rate       |       |             | Emission | Control | ш      | Emission   | Emission<br>Rate | Emission | Emission | Emission Emission Emission<br>Limit Rate Rate Rate | Emission<br>Rate | Reg. 1<br>Emission<br>Limit | Fraction<br>PM10 of   | Emission<br>Rate | Emission Emission Emission<br>Rate Rate Rate | Emission   |
| Cherokee                | mmBtu/hr          | hrlyr | ton/lb      | 프        | (%)     | (tpy)  | (lb/hr)    | (tons/day)       | lb/mmBtu | (tpy)    | (lb/hr)                                            | (tons/day)       | ا                           | Æ                     | (tpy)            | (lb/hr)                                      | (tons/day) |
| Unit 1                  | 1392              | 8760  | 0.0005      | 1.1      | 20      | 1      | 1,225      | 14.7             |          |          |                                                    |                  |                             | 0.92                  |                  |                                              |            |
| Unit 2                  | 1392              | 8760  | 0.0005      |          | 0       |        | 1,531      | 18.4             | 96.0     | 5,853    |                                                    | 16.0             | 0.1                         | 0.92                  | 561              | 128                                          | 5.         |
| Unit 3                  | 1877              | 8760  | 0.0005      |          |         | 9,043  | 2,065      | 24.8             |          |          |                                                    |                  |                             | 0.92                  |                  |                                              |            |
| Unit 4                  | 3520              | 8760  | 0.0005      |          |         | 13,567 | 3,098      | 37.2             |          |          | 1584                                               |                  |                             | 0.92                  |                  |                                              |            |
| TOTAL                   |                   |       |             |          |         | 34,683 | 7,918      | 95.0             |          | 23,577   |                                                    |                  |                             |                       | 3,297            |                                              |            |
| Arenehoo                |                   |       |             |          |         |        |            |                  |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| Alaballoe               |                   |       |             |          |         |        |            |                  |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| Unit 1 (ret. by 1/1/03) | 754.8             |       |             |          | 0 0     |        | *****      |                  | 25.0     |          |                                                    |                  | 5 6                         | 79.0                  |                  |                                              |            |
| Unit 2 (ret. by 1/1/03) | 0.40              | 0200  | 2000        |          |         | 3 637  |            | 10.0             |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| 00E 3                   | 134.0             | 00/00 | 0.000       |          |         |        | 200        | 18.0             |          | 4 491    | 1025                                               | 12.3             |                             |                       | 889              | 157                                          | 0,0        |
| Unit 4                  | 0.60              | 8760  |             |          | 3       |        | 40         | 0.0              |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| TOTAL                   |                   | 5     |             |          |         | 10.224 | 2.335      | 28.0             |          | 7.770    | 1.827                                              |                  |                             |                       | 1,00             |                                              |            |
| Valmont                 |                   |       |             |          |         |        |            |                  |          |          | L                                                  |                  |                             |                       |                  |                                              |            |
| Init 5                  | 1845              | 8760  | 0.0005      | 1.1      | °       | 688'8  | 2,030      | 24.4             |          | κ        |                                                    |                  |                             |                       |                  |                                              |            |
| Unit 6                  | 920               | 8760  | 0.0005      | 0.0      |         |        | 0          | 0.0              | 0.32     |          |                                                    |                  |                             |                       |                  |                                              |            |
| 2 Turbine (2002)        |                   | 8760  | 0.0005      |          |         | 0.5    | 0.4        | 0.0              |          | 39       | 9                                                  | 0.7              |                             |                       |                  |                                              |            |
| TOTAL                   |                   |       |             |          |         | 8,891  | 2,030      | 24.4             |          | 4,474    |                                                    | Ì                |                             |                       |                  |                                              |            |
| Trigen                  |                   |       |             |          |         |        |            |                  |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| Boiler 1 (gas)          | 288               | 8760  |             |          |         | _      | 0          | 0.0              | 0.28     | 353      | 20.0                                               |                  |                             |                       | 139              | 33                                           | 0.4        |
| Boiler 2 (gas)          | 288               | 8760  |             | 0.0      |         |        | 0 ;        |                  |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| Boiler 3                | 225               | 8760  |             | 200      |         | 1,7/4  | 405<br>605 |                  |          |          |                                                    |                  | 2.0                         |                       | 158              |                                              |            |
| Boiler 4                | 040               | 8/20  | 0.000       |          |         | 1,092  |            |                  |          | - 6      |                                                    |                  |                             |                       |                  |                                              |            |
| Boller 5                | nce               | 8     |             |          |         | 2,410  | 3 8        |                  |          |          |                                                    | 9 9              |                             |                       |                  |                                              |            |
| TOTAL                   | •••••             |       | 3           |          |         | 6.959  | _          |                  |          | 3,962    | 902                                                |                  |                             |                       | 838              | 191                                          | 2.3        |
| Rocky Mtn. Bottle       |                   |       |             |          |         |        |            |                  |          |          |                                                    |                  |                             |                       |                  |                                              |            |
| PTE by stack test       |                   |       | L           |          |         | 696    | 28         | 1.0              |          | 424      | 16                                                 | 1.2              |                             |                       |                  |                                              |            |
| TOTAL                   |                   |       |             |          |         | 369    |            | 1.0              |          | 424      |                                                    |                  | 1                           | 1000                  |                  |                                              |            |
| Conoco Refinery         | Бапеіs/day        |       |             |          |         |        |            |                  |          |          |                                                    |                  | Dipallel                    | LIN. PACIO            |                  |                                              |            |
| FCCU**                  | 20,000            | 8760  | 0.0005      |          |         |        |            |                  |          |          |                                                    |                  | 0.05<br>1                   |                       | 185.4            | 47                                           | 5. 5       |
| See attachment          | •••••             | 0/0   | 0.000       | -        |         |        |            |                  |          |          |                                                    |                  |                             |                       | 226              |                                              |            |
| UDS Refinery            | lb Coke/hr        |       |             |          |         |        |            |                  |          |          |                                                    |                  | lb/lb Coke                  | Ib/Ib Coke Em. Factor |                  |                                              |            |
| FCCU***                 | 5,789             | 8760  | 0.0005      |          |         |        |            |                  |          |          |                                                    |                  | 0.00788                     |                       | 200              |                                              |            |
| See attachment          |                   | 8760  | 0.0005      |          |         |        |            |                  |          |          |                                                    |                  |                             |                       | 42               | 2.0                                          | 0.1        |
| Robinson Brick          | Design Rate       |       |             |          |         |        |            |                  |          |          |                                                    |                  | lbs PM/hr                   |                       |                  |                                              |            |
| Rotary Dryer            | 35/Tons/Hr        | 8760  | 0 0005      |          |         |        |            |                  |          |          |                                                    |                  | 30.57                       | 0.24                  |                  |                                              |            |
| Tunnel Dryer (2)        | Reg. 1 Limit      | 8760  | 8760 0.0005 |          |         |        |            |                  |          |          |                                                    |                  | 17.9                        |                       | 131*             | 18                                           | 3 0.2      |
| Rotary Calciner         | 10 Tons/Hr        | 8760  | 0.0005      |          |         |        |            |                  |          |          |                                                    |                  | 14.97                       | 9.34                  |                  |                                              |            |
| TOTAL                   |                   |       |             |          |         |        |            |                  |          |          |                                                    |                  |                             |                       | 186              |                                              |            |

i TOTAL

i Annual Permit Limits, ple emissions modeled at maximum hourly emissions rate

Annual Permit Limits, ple day-Emissions Rate las PM10/1000 barnels and total ple emissions calculation by source

Total ple emissions calculation by Source

NOTE. This revision includes ple calculations for Cherokee 1-2, Arapahoe 1-3, Trigen 3 and RMB for NOX and RMB for SO2. Also, addition of Valmont 6.

2005 Maximum Allowable Emissions Major NOx, SO2 & PM10 Sources

| Source                  | Maximum Operation       | eration |        |                   |                                       | 802                    |                 |          |                   | NOX                    | ×               |                    |                    |                      | PM10                 |                 |                    |
|-------------------------|-------------------------|---------|--------|-------------------|---------------------------------------|------------------------|-----------------|----------|-------------------|------------------------|-----------------|--------------------|--------------------|----------------------|----------------------|-----------------|--------------------|
|                         |                         |         |        |                   | Control                               |                        | Emission        | Emission | Emission          |                        | nission         | Emission           | Reg. 1<br>Emission | Fraction             |                      | Emission        | Emission           |
| Cherokee                | Design Rate<br>mmBtu/hr | hrýr    | ton/lb | Limit<br>15/mmBtu | Efficiency Emission<br>(%) Rate (tpv) | Emission<br>Rate (tpy) | Rate<br>(lb/hr) |          | Limit<br>Ib/mmBtu | Emission<br>Rate (tpy) | Rate<br>(Ib/hr) | Rate<br>(tons/day) | Limit<br>Ib/mmBtu  | PM10 of<br>PM        | mission<br>ate (tpy) | Rate<br>(lb/hr) | Rate<br>(tons/day) |
| Unit 1                  | 1392                    | 8760    | 0 0005 | -                 | 20                                    | 5.365                  | 1               |          | 09:0              | 3,658                  | 835             |                    | O                  | 0.92                 | 561                  | 128             | 1.5                |
| Unit 2                  | 1392                    | 8760    | 0.0005 | -                 | Ö                                     | 6,707                  | 1,53            | 18.4     | 96.0              | 5,853                  | 1336            | 16.0               | 0.1                | 0.92                 | 561                  | 128             | 1.5                |
| Unit 3                  | 1877                    | 8760    | 0.0005 |                   | 0                                     |                        |                 | 24.8     | 0.60              | 4,933                  | 1126            | 13.5               |                    | 0.92                 |                      |                 | 2.1                |
| Unit 4                  | 3520                    | 8760    | 0.0005 |                   | 20                                    |                        |                 | 37.2     | 0.45              | 6,938                  | 1584            | 19.0               |                    | 0.92                 |                      |                 | 3.9                |
| TOTAL                   |                         |         |        |                   |                                       | 34,683                 |                 | 95.0     |                   | 21,382                 | 4,882           | 58.6               |                    |                      | 3,297                |                 | 9.0                |
| Arapahoe                |                         |         |        |                   |                                       |                        | Ш               |          |                   |                        |                 |                    |                    |                      |                      |                 |                    |
| Unit 1 (ref. by 1/1/03) | 754.8                   |         |        | 1.1               | 0                                     |                        |                 |          | 0.98              |                        |                 |                    | 0.1                | 19'0                 |                      |                 |                    |
| Unit 2 (ret. by 1/1/03) | 754.8                   |         | ••••   | 7                 | 0                                     | •••••                  | •••••           |          | 0.98              | •••••                  | •••••           |                    | 0.1                | 0.67                 |                      | •••••           |                    |
| Unit 3                  | 754.8                   | 8760    | 0.0005 |                   | 0                                     |                        | 830             | 10.0     | 0.98              | 3,240                  | 740             | 8.9                |                    | 0.92                 |                      | 8               |                    |
| Unit 4                  | 1709.0                  | 8760    | 0.0005 |                   | 20                                    |                        | 1,504           | 18.0     | 9.0               | 4,491                  | 1025            | 12.3               |                    | 0.92                 |                      | 157             |                    |
| 2 Turbines (2002)       |                         | 8760    | 0.0005 |                   |                                       |                        | 0.4             | 0.0      |                   | 39                     | 62              | 0.7                |                    |                      | ***                  | 9               | 0.1                |
| TOTAL                   |                         |         |        |                   |                                       | 10,224                 | 2,335           | 28.0     |                   | 7,770                  | 1,827           | 21.9               |                    |                      | 1,001                | 233             |                    |
| Valmont                 |                         |         |        |                   |                                       |                        |                 |          |                   |                        |                 |                    |                    |                      |                      |                 |                    |
| Unit 5                  | 1845                    | 8760    | 0.0005 | 1.1               | 0                                     | 8,889                  | 2,030           | 24.4     | 0.45              | 3,636                  | 830             | 10.0               |                    |                      |                      |                 |                    |
| Unit 6                  | 920                     | 8760    | 0.0005 | 0.0               |                                       |                        | 0               | 0.0      | 0.32              | 799                    | 182             | 2.2                |                    |                      |                      |                 |                    |
| 2 Turbine (2002)        | ••••                    | 8760    | 0.0005 |                   |                                       | 0.5                    | 0.4             | 0.0      | ••••              | 39*                    | 19              | 0.7                |                    |                      |                      |                 |                    |
| TOTAL                   |                         |         |        | •••••             |                                       | 8,891                  | 2,030           | 24.4     |                   | 4,474                  | 1,074           | 12.89              |                    |                      |                      | ****            |                    |
| Trigen                  |                         |         |        |                   |                                       |                        |                 |          |                   |                        |                 |                    |                    |                      |                      | ••••            |                    |
| Boiler 1 (das)          | 288                     |         | 0.0005 | 90000             |                                       | 1                      | ō               | 0.0      | 0.28              | 353                    | 81              |                    |                    |                      | 139                  | 32              | 0.4                |
| Boiler 2 (das)          | 288                     | 8760    | 0.0005 | 0.0006            |                                       | -                      | 0               | 0.0      | 0.28              | 353                    | 8               |                    | 0.11               |                      | 139                  | 32              | 0.4                |
| Boiler 3                | 225                     |         | 0.0005 | 1.8               |                                       | 1,774                  | 405             | 4.9      | 0.4               | 384                    | 88              |                    |                    | _                    | 118                  | 27              | 0.3                |
| Boiler 4                | 360                     |         | 0.0005 | 1.2               |                                       | 1,892                  | 432             | 5.2      | 0.7               | 4,                     | 252             |                    |                    |                      | 158                  | 98              | 0.4                |
| Boiler 5                | 920                     |         | 0.0005 | 1.2               |                                       | 3,416                  | 780             | 9.4      | 0.7               | 1,993                  | 455             | 5.5                |                    | _                    | 285                  | 65              | 0.8                |
| SIP reduction           |                         |         | 0.0005 | •••••             |                                       | -125                   | -29             | -0.3     |                   | -225                   | -5              |                    |                    |                      |                      |                 |                    |
| TOTAL                   |                         |         |        |                   |                                       | 6,959                  | 1,589           | 19.1     |                   | 3,962                  | 902             | Ì                  |                    |                      | 838                  | 191             | 2.3                |
| Rocky Mtn. Bottle       |                         |         |        |                   |                                       |                        |                 |          |                   |                        |                 |                    |                    |                      |                      |                 |                    |
| PTE by stack test       |                         |         |        |                   |                                       | 369                    | 2 3             | 1.0      |                   | 424                    | 97              | 1.2                |                    |                      |                      |                 |                    |
| Conoco Refinery         | Ramels/dav              |         |        |                   |                                       | 200                    | \$              | 2.       |                   | *7                     | ĥ               | 7                  | lb/barrel          | Em Facto             |                      |                 |                    |
| FCCU**                  | 20.000                  | 8760    | 0.0005 |                   |                                       |                        |                 |          |                   |                        |                 |                    | 0.051              |                      | 185.4                | 42              | 0.5                |
| See attachment          |                         | 8760    | 0.0005 |                   |                                       |                        |                 |          |                   |                        |                 |                    |                    |                      | 4                    | ····            | 0.1                |
| TOTAL                   |                         |         |        |                   |                                       |                        | ••••            |          |                   |                        |                 |                    |                    |                      |                      | 52              | 9.0                |
| UDS Refinery            | lb Coke/hr              |         |        |                   |                                       |                        |                 |          |                   |                        |                 |                    | lb/lb Coke         | b/lb Coke Em. Factor |                      |                 |                    |
| FCCU***                 | 5,789                   | 8760    | 0.0005 |                   |                                       |                        |                 |          |                   |                        |                 |                    | 0.00788            |                      | 200                  |                 |                    |
| See attachment          |                         | 8760    | 0.0005 |                   |                                       |                        |                 |          |                   |                        |                 |                    |                    |                      | 45                   | · · · ·         | 0.1                |
| TOTAL                   |                         |         |        |                   |                                       |                        |                 |          |                   |                        |                 |                    |                    |                      | 241                  |                 |                    |
| Robinson Brick          | Design Rate             |         |        |                   |                                       |                        |                 |          |                   |                        |                 |                    | lbs PM/hr          |                      |                      |                 |                    |
|                         | 35/Tons/Hr.             | 8760    | 0.0005 |                   |                                       |                        |                 |          |                   |                        |                 |                    | 30.57              |                      |                      |                 |                    |
| (3)                     | Reg. 1 Limit            | 8760    | 0.0005 |                   |                                       |                        | ••••            |          |                   |                        |                 |                    | 17.9               |                      | 131*                 | 18              | 0.2                |
|                         | 10 Tons/Hr              | 8760    | 0.0005 |                   |                                       |                        |                 |          |                   |                        |                 |                    | 14.97              |                      |                      |                 |                    |
| TOTAL                   |                         |         |        |                   |                                       | •••                    | •••             |          |                   | •••                    |                 |                    |                    |                      | 186                  |                 |                    |

TOTAL

TO

# MAXIMUM ALLOWABLE EMISSIONS

|                | o de la constantina della cons | - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 | ublic Service Co | Sublic Service Company - Zuni Station |        | noisein<br>oto | Emission Data Emission Data | miceion Date |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|---------------------------------------|--------|----------------|-----------------------------|--------------|
| Source         | (mmBtu/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (lb/mmBtu)                              | (lb/mmBtu) of PM | Hours of Operation                    | dl/uot | (tpy)          | (lb/hr)                     | (tpd)        |
| Unit 1A (coal) | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.102                                   | 0.71             | 8760                                  | 0.0005 | 143            |                             | 0.39         |
| Jnit 1B (coal) | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.126                                   | 0.71             | 8760                                  | 0.0005 | 78             |                             | 0.21         |
| Jnit 2 (coal)  | 1075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                     | 0.71             | 8760                                  | 0.0005 | 334            |                             | 0.92         |
| Total          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                                       |        | 555            | 127                         | 2            |

APCD staff included Zuni in the ISC modeling for major sources of PM10 and used the Regulation 1 emissions limit for combustion sources, which is fuel neutral. Regulation 1, however, includes a provision that requires Zuni to be operated on gas during the winter season; and a more appropriate calculation is included below. The ISC modeling indicates that at the the emission rate calculated using the Regulation 1 limit above (555 tpy) has a negligible effect on receptor concentration. Additional ISC modeling with the more appropriate 56 tpy was considered unnecessary.

|               | Design Rate | Heat Value                | lbs. PM10/ |                    |        | Emission Rate | Emission Rate Emission Rate Emission Rate | Emission Rate |
|---------------|-------------|---------------------------|------------|--------------------|--------|---------------|-------------------------------------------|---------------|
| Source        | (mmBtu/hr)  | (mmBtu/hr) (scf/1000 Btu) | mmscf      | Hours of Operation | ton/lb | (tpy)         | (lb/hr)                                   | (pd)          |
| Unit 1A (gas) | 450         | 0.001                     | 7.45       | 8760               | 0.0005 | 15            | 3.35                                      | 0.0           |
| Unit 1B (gas) | 200         |                           | 7.45       | 8760               | 0.0005 | 7             | 1.49                                      | 0.02          |
| Unit 2 (gas)  | 1075        |                           | 7.45       | 8760               | 0.0005 | 35            | 8.01                                      | 0.10          |
| Total         |             |                           |            |                    |        | 99            | 13                                        | 0             |
|               |             |                           |            |                    |        |               |                                           |               |
|               |             |                           |            |                    |        |               |                                           |               |
|               | Design Rate | Heat Value                | lbs. NOx/  |                    |        | Emission Rate | Emission Rate Emission Rate               | Emission Rate |
| Source        | (mmBtu/hr)  | (mmBtu/hr) (scf/1000 Btu) | mmscf*     | Hours of Operation | ton/lb | (tpy)         | (lb/hr)                                   | (pd)          |
| Unit 1A (gas) | 450         | 0.001                     | 280        | 8760               | 0.0005 | 552           |                                           | 1.51          |
| Unit 1B (gas) | 200         | 0.001                     | 280        | 8760               | 0.0005 | 245           |                                           | 0.67          |
| Unit 2 (gas)  | 1075        |                           | 280        | 8760               | 0.0005 | 1318          | 301.00                                    | 3.61          |
| Total         |             |                           |            |                    |        | 2116          | 483                                       | 5.80          |

<sup>\*</sup> new AP-42 emission factor

|               | Design Rate | Heat Value     | lbs. SO2/ |                    |        | Emission Rate | Emission Rate Emission Rate | Emission Rate |
|---------------|-------------|----------------|-----------|--------------------|--------|---------------|-----------------------------|---------------|
| Source        | (mmBtu/hr)  | (scf/1000 Btu) | mmscf     | Hours of Operation | ton/lb | (tpy)         | (lb/hr)                     | (pd)          |
| Unit 1A (gas) | 450         | 0.001          | 9.0       | 8760               | 0.0005 | 1             | 0.27                        | 00.00         |
| Unit 1B (gas) | 200         | 0.001          | 9.0       | 8760               | 0.0005 | _             | 0.12                        | 00.0          |
| Unit 2 (gas)  | 1075        | 0.001          | 9.0       | 8760               | 0.0005 | n             | 0.65                        | 0.01          |
| Total         |             |                |           |                    |        | 5             | 1                           | 0             |

Prepared by Jerry Dilley

# Appendix E.3 AP – 42 Emission Factors

Table 1.1-6. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE-SPECIFIC EMISSION FACTORS FOR DRY BOTTOM BOILERS BURNING PULVERIZED BITUMINOUS AND SUBBITUMINOUS COAL<sup>a</sup>

|                                                  |            | Baghouse                             | 0.02A   | 0.02A      | 0.02A  | 0.01A  |      | 0.006A | 0.006A<br>0.006A | 0.006A<br>0.006A<br>0.002A |
|--------------------------------------------------|------------|--------------------------------------|---------|------------|--------|--------|------|--------|------------------|----------------------------|
| (ton)                                            | ۰          | ESP <sup>e</sup> B <sub>e</sub>      | 0.064A  | 0.054A     | 0.024A | 0.024A |      | 0.01A  | 0.01A<br>0.01A   | 0.01A<br>0.01A<br>0.01A    |
| ssion Factor <sup>c</sup> (lb                    | Controlled | Scrubber®                            | 0.48A ( | 0.42A      | 0.38A  | 0.3A   |      | 0.22A  |                  |                            |
| Cumulative Emission Factor <sup>e</sup> (1b/ton) |            | Multiple<br>Cyclones <sup>f</sup> Sc | 1.08A   | 0.58A      | 0.28A  | 0.06A  |      | 0.02A  | 0.02A<br>0.02A   | 0.02A<br>0.02A<br>0.02A    |
|                                                  |            | Uncontrolled⁴                        | 3.2A    | 2.3A       | 1.7A   | 0.6A   |      | 0.2A   | 0.2A<br>0.2A     | 0.2A<br>0.2A<br>0.10A      |
|                                                  |            | Baghouse U                           | -64     | 92         | 11     | 53     | _    | 31     | 31 25            | 31<br>25<br>14             |
| 1 Size                                           | led        | ESP                                  | 79      | <i>L</i> 9 | 20     | 59     |      | 17     | 17               | 17 14 12                   |
| iss % < Statec                                   | Controlled | Scrubber                             | 81      | 7.1        | 62     | 51     | 30   | CC     | 31<br>31         | 33<br>20                   |
| Cumulative Mass % ≤ Stated Size                  |            | Multiple<br>Cyclones                 | 54      | 29         | 14     | 3      | -    | •      |                  |                            |
|                                                  |            | Uncontrolled                         | 32      | 23         | 17     | 9      | 2    |        | 2 2              | 7 7 1                      |
|                                                  |            | Particle<br>Size <sup>b</sup>        | 15      | 10         | 9      | 2.5    | 1.25 |        | 00.1             | 1.00                       |

Reference 33. Applicable Source Classification Codes are 1-01-002-02, 1-02-002-06, 1-01-002-12, 1-02-002-12, and 1-03-002-16. To convert from lbfton to kg/Mg, multiply by 0.5. Emission Factors are lb of pollutant per ton of coal combusted, as fired. ESP = Electrostatic precipitator.

Expressed as aerodynamic equivalent diameter.

A = coal ash weight percent, as fired. For example, if coal ash weight is 8.2%, then A = 8.2.

Estimated control efficiency for multiple cyclones is 80%; for scrubber, 94%; for ESP, 99.2%; and for baghouse, 99.8%.

EMISSION FACTOR RATING = E.

EMISSION FACTOR RATING = D.

Table 1.3-4. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE-SPECIFIC EMISSION FACTORS FOR UTILITY BOILERS FIRING RESIDUAL OIL\*

|                                                    | Scrubber Controlled         | EMISSION<br>FACTOR<br>RATING          | D     | Ω      | D      | Q      | D      | D      | Q      | D      |
|----------------------------------------------------|-----------------------------|---------------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|
| (                                                  | Scrubber C                  | Emission<br>Factor                    | 0.50A | 0.50A  | 0.50A  | 0.48A  | 0.46A  | 0.42A  | 0.32A  | 0.50A  |
| Cumulative Emission Factor lb/10 <sup>3</sup> gal) | trolled <sup>d</sup>        | EMISSION<br>FACTOR<br>RATING          | Э     | ш      | ш      | ш      | ш      | ш      | ш      | Е      |
| Cumulative Emissi                                  | ESP Controlled <sup>d</sup> | Emission<br>Factor                    | 0.05A | 0.042A | 0.035A | 0.028A | 0.021A | 0.018A | 0.007A | 0.067A |
| Uncontrolled®                                      |                             | EMISSION<br>FACTOR<br>RATING          | C     | ပ      | ၁      | ပ      | ၁      | C      | C      | С      |
|                                                    | Uncon                       | Emission<br>Factor                    | 6.7A  | 5.9A   | 4.8A   | 4.3A   | 3.6A   | 3.3A   | 1.7A   | 8.3A   |
| fass %<br>ize                                      | Controlled                  | Scrubber                              | 100   | 100    | 100    | 76     | 91     | 84     | 64     | 100    |
| Cumulative Mass % stated Size                      | نَّ                         | ESP                                   | 75    | 63     | 52     | 41     | 31     | 28     | 20     | 100    |
| Cumt                                               |                             | Uncon-<br>trolled                     | 80    | 71     | 58     | 52     | 43     | 39     | 20     | 100    |
|                                                    |                             | Particle<br>Size <sup>b</sup><br>(µm) | 15    | 10     | 9      | 2.5    | 1.25   | 1.00   | 0.625  | TOTAL  |

Reference 26. Source Classification Codes 1-01-004-01/04/05/06 and 1-01-005-04/05. To convert from lb/1d gal to kg/m³, multiply by 0.120. ESP = electrostatic precipitator.

Expressed as aerodynamic equivalent diameter.
 Particulate emission factors for residual oil combustion without emission controls are, on average, a function of fuel oil grade and sulfur content where S is the weight % of sulfur in the oil. For example, if the fuel is 1.00% sulfur, then S = 1.
 No. 6 oil: A = 1.12(S) + 0.37
 No. 5 oil: A = 1.2
 No. 4 oil: A = 0.84

<sup>d</sup> Estimated control efficiency for ESP is 99.2%.
 \* Estimated control efficiency for scrubber is 94%

Table 11.25-8. PARTICLE SIZE DISTRIBUTIONS FOR FIRE CLAY PROCESSING<sup>a</sup> EMISSION FACTOR RATING: D

|                     |                                       | Multiclone                            | Cyclone                               | Cyclone/Sambhan                 |
|---------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|
|                     | Uncontrolled                          | Controlled                            | Controlled                            | Cyclone/Scrubber<br>Controlled  |
| Diameter (μm)       | Cumulative %<br>Less Than<br>Diameter | Cumulative %<br>Less Than<br>Diameter | Cumulative %<br>Less Than<br>Diameter | Cumulative % Less Than Diameter |
| Rotary Dryers (SC   | C 3-05-043-30) <sup>b</sup>           |                                       |                                       |                                 |
| 2.5                 | 2.5                                   | ND                                    | 14                                    | ND                              |
| 6.0                 | 10                                    | ND                                    | 31                                    | ND                              |
| 10.0                | 24                                    | ND                                    | 46                                    | ND                              |
| 15.0                | 37                                    | ND                                    | 60                                    | ND                              |
| 20.0                | 51                                    | ND                                    | 68                                    | ND                              |
| Rotary Calciners (S | SCC 3-05-43-40)°                      |                                       | ·                                     |                                 |
| 1.0                 | 3.1                                   | 13                                    | ND                                    | 31                              |
| 1.25                | 4.1                                   | 14                                    | ND                                    | 43                              |
| 2.5                 | 6.9                                   | 23                                    | ND                                    | 46                              |
| 6.0                 | 17                                    | 39                                    | ND                                    | 55                              |
| 10.0                | 34                                    | 50                                    | ND                                    | 69                              |
| 15.0                | 50                                    | 63                                    | ND                                    | 81                              |
| 20.0                | 62                                    | 81                                    | ND                                    | 91                              |

a For filterable PM only. SCC = Source Classification Code. ND = no data.
b Reference 11.
c References 12-13 (uncontrolled). Reference 12 (multiclone-controlled). Reference 13 (cyclone/scrubber-controlled).

Table 1.1-3. UNCONTROLLED EMISSION FACTORS FOR SO, NO, AND CO FROM BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION<sup>®</sup>

|                                                                       |                                                    | os                             | so <sub>x</sub> <sup>b</sup> | N                  | NO <sub>x</sub> c            | σ                  | CO <sup>d,e</sup>            |
|-----------------------------------------------------------------------|----------------------------------------------------|--------------------------------|------------------------------|--------------------|------------------------------|--------------------|------------------------------|
| Firing Configuration                                                  | SCC                                                | Emission<br>Factor<br>(lb/ton) | EMISSION<br>FACTOR<br>RATING | Emission<br>Factor | EMISSION<br>FACTOR<br>RATING | Emission<br>Factor | EMISSION<br>FACTOR<br>RATING |
| PC-fired, dry bottom,<br>wall-fired                                   | 1-01-002-02/22<br>1-02-002-02/22<br>1-03-002-06/22 | 38S<br>(35S)                   | V                            | 21.7               | V                            | 0.5                | ¥                            |
| PC-fired, bituminous coal, dry bottom, cell burner fired <sup>f</sup> | 1-01-002-15                                        | 38S<br>(35S)                   | ∢                            | 31.1               | Ü                            | 0.5                | ∢                            |
| PC-fired, dry bottom,<br>tangentially fired                           | 1-01-002-12/26<br>1-02-002-12/26<br>1-03-002-16/26 | 38S<br>(35S)                   | ∢                            | 14.4               | ď                            | 0.5                | <b>V</b>                     |
| PC-fired, wet bottom                                                  | 1-01-002-01/21<br>1-02-002-01/21<br>1-03-002-05/21 | 38S<br>(35S)                   | Q                            | 34.0               | ပ                            | 0.5                | <b>V</b>                     |
| Cyclone fumace                                                        | 1-01-002-03/23<br>1-02-002-03/23<br>1-03-002-03/23 | 38S<br>(35S)                   | Q                            | 33.8               | ပ                            | 0.5                | <b>V</b>                     |
| Spreader stoker                                                       | 1-01-002-04/24<br>1-02-002-04/24<br>1-03-002-09/24 | 38S<br>(35S)                   | æ                            | 13.7               | ∢                            | ν,                 | ∢                            |
| Spreader stoker, with multiple cyclones, and reinjection              | 1-01-002-04/24<br>1-02-002-04/24<br>1-03-002-09/24 | 38S<br>(35S)                   | m                            | 13.7               | ∢ .                          | <b>v</b> o         | ∢ .                          |
| Spreader stoker, with multiple cyclones, no reinjection               | 1-01-002-04/24<br>1-02-002-04/24<br>1-03-002-09/24 | 38S<br>(35S)                   | A                            | 13.7               | A                            | ٠,                 | <b>V</b>                     |

Table 1.1-3 (cont.).

|                   | Z ~ m                          |                                           |                                           |                                           |                                           |                                                    |                            |                |
|-------------------|--------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------|----------------|
| CO <sup>d,e</sup> | EMISSION<br>FACTOR<br>RATING   | A                                         | ¥                                         | ∢                                         | ¥                                         | Ø                                                  | <b>a</b>                   | 田              |
| O                 | Emission<br>Factor<br>(lb/ton) | 0.5                                       | 0.5                                       | 5                                         | 5                                         | 9                                                  | =                          | 275            |
| ),                | EMISSION<br>FACTOR<br>RATING   | Ą                                         | U                                         | В                                         | В                                         | ¥.                                                 | V .                        | 凹              |
| , NO,             | Emission<br>Factor<br>(lb/ton) | 33                                        | 17                                        | ==                                        | 80<br>80                                  | 7.5                                                | 9.5                        | 9.1            |
| q ×               | EMISSION<br>FACTOR<br>RATING   | A                                         | ₹                                         | М                                         | Д                                         | В                                                  | В                          | D              |
| SO <sub>v</sub> s | Emission<br>Factor<br>(lb/ton) | 38S                                       | 35S                                       | 38S                                       | 35S                                       | 38S<br>(35S)                                       | 31S                        | 318            |
|                   | SCC                            | 1-01-002-03<br>1-02-002-03<br>1-03-002-03 | 1-01-002-23<br>1-02-002-23<br>1-03-002-23 | 1-01-002-04<br>1-02-002-04<br>1-03-002-09 | 1-01-002-24<br>1-02-002-24<br>1-03-002-24 | 1-01-002-05/25<br>1-02-002-05/25<br>1-03-002-07/25 | 1-02-002-06<br>1-03-002-08 | 1-03-002-14    |
|                   | Firing Configuration           | Cyclone Furnace,<br>bituminous            | Cyclone Furnance, sub-<br>bituminous      | Spreader stoker, bituminous               | Spreader Stoker,<br>sub-bituminous        | Overfeed stoker                                    | Underfeed stoker           | Hand-fed units |

Table 3.1-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO $_{\chi}$ ) AND CARBON MONOXIDE (CO) FROM STATIONARY GAS TURBINES

| Emission Factors <sup>a</sup>              |                                         |                           |                                         |                            |  |  |  |  |  |  |  |  |
|--------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|----------------------------|--|--|--|--|--|--|--|--|
| Turbine Type                               | Nitroger                                | 1 Oxides                  | Carbon Monoxide                         |                            |  |  |  |  |  |  |  |  |
| Natural Gas-Fired Turbines <sup>b</sup>    | (lb/MMBtu) <sup>c</sup><br>(Fuel Input) | Emission Factor<br>Rating | (lb/MMBtu) <sup>c</sup><br>(Fuel Input) | Emission Factor<br>Rating  |  |  |  |  |  |  |  |  |
| Uncontrolled                               | 3.2 E-01                                | A                         | 8.2 E-02 <sup>d</sup>                   | Α                          |  |  |  |  |  |  |  |  |
| Water-Steam Injection                      | 1.3 E-01                                | Α                         | 3.0 E-02                                | Α                          |  |  |  |  |  |  |  |  |
| Lean-Premix                                | 9.9 E-02                                | D                         | 1.5 E-02                                | D                          |  |  |  |  |  |  |  |  |
| Distillate Oil-Fired Turbines <sup>e</sup> | (lb/MMBtu) <sup>f</sup><br>(Fuel Input) | Emission Factor<br>Rating | (lb/MMBtu) <sup>f</sup><br>(Fuel Input) | Emission Factor Rating     |  |  |  |  |  |  |  |  |
| Uncontrolled                               | 8.8 E-01                                | С                         | 3.3 E-03                                | C C Emission Factor Rating |  |  |  |  |  |  |  |  |
| Water-Steam Injection                      | 2.4 E-01                                | В                         | 7.6 E-02                                |                            |  |  |  |  |  |  |  |  |
| Landfill Gas-Fired Turbines <sup>g</sup>   | (lb/MMBtu) <sup>h</sup><br>(Fuel Input) | Emission Factor<br>Rating | (lb/MMBtu) <sup>h</sup><br>(Fuel Input) |                            |  |  |  |  |  |  |  |  |
| Uncontrolled                               | 1.4 E-01                                | A                         | 4.4 E-01                                | A                          |  |  |  |  |  |  |  |  |
| Digester Gas-Fired Turbines                | (lb/MMBtu) <sup>k</sup><br>(Fuel Input) | Emission Factor<br>Rating | (lb/MMBtu) <sup>k</sup><br>(Fuel Input) | Emission Factor Rating     |  |  |  |  |  |  |  |  |
| Uncontrolled                               | 1.6 E-01                                | D                         | 1.7 E-02                                | D                          |  |  |  |  |  |  |  |  |

a Factors are derived from units operating at high loads (≥80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief".

b Source Classification Codes (SCCs) for natural gas-fired turbines include 2-01-002-01, 2-02-002-01, 2-02-002-03, 2-03-002-02, and 2-03-002-03. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value.

<sup>&</sup>lt;sup>c</sup> Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10° scf), multiply by 1020.

d It is recognized that the uncontrolled emission factor for CO is higher than the water-steam injection and lean-premix emission factors, which is contrary to expectation. The EPA could not identify the reason for this behavior, except that the data sets used for developing these factors are different.

<sup>&</sup>lt;sup>e</sup> SCCs for distillate oil-fired turbines include 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

f Emission factors based on an average distillate oil heating value of 139 MMBtu/10<sup>3</sup> gallons. To convert from (lb/MMBtu) to (lb/10<sup>3</sup> gallons), multiply by 139.

g SCC for landfill gas-fired turbines is 2-03-008-01.

h Emission factors based on an average landfill gas heating value of 400 Btu/scf at 60°F. To convert from (lb/MMBtu), to (lb/106 scf) multiply by 400.

<sup>&</sup>lt;sup>j</sup> SCC for digester gas-fired turbine is 2-03-007-01.

k Emission factors based on an average digester gas heating value of 600 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10<sup>6</sup> scf) multiply by 600.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO,) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION<sup>8</sup>

|                                                                    | NC                                          | NO <sub>x</sub> <sup>b</sup> |                                 | 00                           |
|--------------------------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------|------------------------------|
| Combustor Type<br>(MMBtu/hr Heat Input)<br>[SCC]                   | Emission Factor<br>(lb/10 <sup>6</sup> scf) | Emission<br>Factor<br>Rating | Emission Factor<br>(lb/10° scf) | Emission<br>Factor<br>Rating |
| Large Wall-Fired Boilers                                           |                                             | :                            |                                 |                              |
| [1-01-006-01, 1-02-006-01, 1-03-006-01]                            |                                             |                              |                                 |                              |
| Uncontrolled (Pre-NSPS)°                                           | 280                                         | A                            | 84                              | В                            |
| Uncontrolled (Post-NSPS)                                           | 190                                         | A                            | 84                              | В                            |
| Controlled - Low NO <sub>x</sub> burners                           | 140                                         | А                            | 84                              | В                            |
| Controlled - Flue gas recirculation                                | 100                                         | D                            | 84                              | В                            |
| Small Boilers<br>(<100)<br>[1-01-006-02, 1-02-006-02, 1-03-006-03] |                                             |                              |                                 |                              |
| Uncontrolled                                                       | 100                                         | В                            | 84                              | В                            |
| Controlled - Low NO <sub>x</sub> burners                           | 50                                          | D                            | 84                              | В                            |
| Controlled - Low NOx burners/Flue gas recirculation                | 32                                          | O                            | 84                              | В                            |
| Tangential-Fired Boilers<br>(All Sizes)<br>[1-01-006-04]           |                                             |                              |                                 |                              |
| Uncontrolled                                                       | 170                                         | A                            | 24                              | O                            |
| Controlled - Flue gas recirculation                                | 9/                                          | Q                            | 86                              | D                            |
| Residential Furnaces (<0.3)<br>[No SCC]                            |                                             |                              |                                 |                              |
| Uncontrolled                                                       | 94                                          | В                            | 40                              | В                            |

Reference 13. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from 1b/10 ° scf to kg/10° m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ° scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. Expressed as NO<sub>2</sub>. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO × emission factor. For targential-fired boilers to RX control, apply a 13 percent reduction to the appropriate NO × emission factor. NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION<sup>a</sup>

| Pollutant                                                | Emission Factor<br>(lb/10 <sup>6</sup> scf) | Emission Factor Rating |
|----------------------------------------------------------|---------------------------------------------|------------------------|
| CO <sub>2</sub> <sup>b</sup>                             | 120,000                                     | A                      |
| Lead                                                     | 0.0005                                      | D                      |
| N <sub>2</sub> O (Uncontrolled)                          | 2.2                                         | E                      |
| N <sub>2</sub> O (Controlled-low-NO <sub>X</sub> burner) | 0.64                                        | Е                      |
| PM (Total) <sup>c</sup>                                  | 7.6                                         | D                      |
| PM (Condensable) <sup>c</sup>                            | 5.7                                         | D                      |
| PM (Filterable) <sup>c</sup>                             | 1.9                                         | В                      |
| SO <sub>2</sub> <sup>d</sup>                             | 0.6                                         | A                      |
| тос                                                      | 11                                          | В                      |
| Methane                                                  | 2.3                                         | В                      |
| VOC                                                      | 5.5                                         | С                      |

<sup>&</sup>lt;sup>a</sup> Reference 13. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10<sup>6</sup> scf to kg/10<sup>6</sup> m³, multiply by 16. To convert from lb/10<sup>6</sup> scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds.
VOC = Volatile Organic Compounds.

b Based on approximately 100% conversion of fuel carbon to CO<sub>2</sub>. CO<sub>2</sub>[lb/106 scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO<sub>2</sub>, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x10<sup>4</sup> lb/10<sup>6</sup> scf.

d Based on 100% conversion of fuel sulfur to SO<sub>2</sub>.

Assumes sulfur content is natural gas of 2,000 grains/10<sup>6</sup> scf. The SO<sub>2</sub> emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO<sub>2</sub> emission factor by the ratio of the site-specific sulfur content (grains/10<sup>6</sup> scf) to 2,000 grains/10<sup>6</sup> scf.

<sup>&</sup>lt;sup>c</sup> All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM<sub>10</sub>, PM<sub>2.5</sub> or PM<sub>1</sub> emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

# Appendix E.4 Emission Inventory Supporting Information

# Conoco Refinery

APCD

303-692-3106 303-782-0278

Post-It® Fax Note

TO LONG NOUVEN

Date 1-22-01 pages

Conoco

JAY CHRISTOPHER

Phone \* 303 - 286 - 5731 Fax \* 303 - 286 - 5866

Cowoco Dewek Refinery PM Dota/Colouletions Waso Fon TileV PTE

| Emission Factor Source             | AP-42, Section 1.4 (1/95 update) | AP-42, Section 1.4 (1/95 update) AP-42, Section 1.4 (1/95 update) |           | AP-42, Section 1.4 (1/95 update) | AP-42, Section 1.4 (1/95 update) |
|------------------------------------|----------------------------------|-------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------|----------------------------------|----------------------------------|
| Calc. PTE<br>(TPY)                 | 2.27                             | 0.86                                                              | 2.04                             | 1.79                             | 0.40                             | 1.77                             | 3.43                             | 3.50                             | 0.36                             | 1.75                             | 0.84                             | 3.59                             | 1.71                             | 1.46                             | 2.12                             | 0.32                             | 0.32                             | 00.0      | 4.59                             | 5.32                             |
| Calc. PTE (Ibs/year)               | 4536.481                         | 1728.118                                                          | 4082.874                         | 3571.59                          | 807.36                           | 3545.149                         | 6869.454                         | 7008.646                         | 714.84                           | 3501,994                         | 1680.168                         | 7171.95                          | 3416.4                           | 2917.08                          | 4231.08                          | 630.72                           | 630.72                           | 0         | 9178.452                         | 10633.12                         |
| TV Factor (Ib/mmscf)               | 13.7                             | 13.7                                                              | 13.7                             | 13.7                             | 12                               | 13.7                             | 13.7                             | 13.7                             | 12                               | 13.7                             | 13.7                             | 13.7                             | ო                                | က                                | ო                                | 12                               | 5                                |           | 13.7                             | 13.7                             |
|                                    | 331.13                           | 126.14                                                            | 298.02                           | 260.7                            | 67.28                            | 258.77                           | 501.42                           | 511.58                           | 59.57                            | 255.62                           | 122.64                           | 523.5                            | 1138.8                           | 972.36                           | 1410.36                          | 52.56                            | 52.56                            |           | 96.699                           | 776.14                           |
| PM-10 PTE provide in table to APCD | 2.27                             | 0.86                                                              | 20.                              | 1.79                             | 0.40                             | 1.77                             | 3.43                             | 3.50                             | 0.36                             | 1.75                             | 0.84                             | 3.59                             | 1.71                             | 1.46                             | 2.12                             | 0.32                             | 0.32                             | 0.01      | 4.59                             | 5.32                             |
| APEN # Source ID                   | 3 H-32                           | 4 4 6<br>5 H 6                                                    | 7 H-10                           | 9 H-11                           | 10 H-33                          | 11 H-12                          | 12 H-37                          | 13 H-17                          | 14 H-13                          | 16 H-19                          | 17 H-20                          | 18 H-22                          | 19 B-4                           | 21 B-6                           | 23 B-8                           | 51 H-18                          | 52 H-16                          | 53 #1 SRU | 54 H-27                          | 78 H-28,29,30                    |

Emission Factor Source
PM emissions from the unit are
controlled by a 2-stage cyclone.
The emission factor is determined
by applying an 85% control
efficiency (see AP-42, Section 5.1,
page 5.1-9) to the uncontrolled
factors of 340 bs/mBbi fresh feed.

(TPY)

(lbs/year) 370840

(lb/mBbl) 50.8

(mBb(/yr) 7300

APEN # Source ID PM-10 PTE 25 FCC 194.69

TV Feed Rate

TV Factor Calc, PTE Calc, PTE

Alous Lead earlin docusion about 20019 lown Food Asta 185.42 is my number to wa. From: "Congram, Anthony R." < Anthony.R.Congram@usa.conoco.com>

**To:** 'MIKE Silverstein' <mcsilver@smtpgate.dphe.state.co.us>

**Date:** 3/26/01 2:15PM

**Subject:** RE: FCC Control Efficiency Question

FCC cyclones are completely integral. No means to bypass.

**Tony Congram** 

Voice: 303-286-5890

Fax: 5866

anthony.r.congram@usa.conoco.com <mailto:anthony.r.congram@usa.conoco.com>

----Original Message-----

From: MIKE Silverstein [SMTP:mcsilver@smtpgate.dphe.state.co.us]

Sent: Monday, March 26, 2001 2:05 PM
To: Anthony.R.Congram@usa.conoco.com

Subject: Re: FCC Control Efficiency Question

Next question: Are the cyclones inherent to the system - can they

be

by-passed/shut down and the FCCU still operated?

>>> "Congram, Anthony R." <Anthony.R.Congram@usa.conoco.com> 03/26/01

11:03AM >>>

Mike, is this enough of a reference (from AP-42, Chapter 5)?

Third paragraph under 5.1.2.2.2, page 8 or 9 of the document (depending

on

formatting).

"FCC particulate emissions are controlled by cyclones and/or electrostatic

precipitators.

Particulate control efficiencies are as high as 80 to 85 percent.3,5

Carbon

monoxide waste heat boilers

reduce the CO and hydrocarbon emissions from FCC units to negligible levels.3 TCC catalyst

regeneration produces similar pollutants to FCC units, but in much smaller

quantities (Table 5.1-1).

The particulate emissions from a TCC unit are normally controlled by

high-efficiency cyclones.

Carbon monoxide and hydrocarbon emissions from a TCC unit are incinerated to negligible levels by passing the flue gases through a process heater firebox or smoke plume burner. In some installations,

burner. In some installations, sulfur oxides are removed by passing the regenerator flue gases through

water or caustic scrubber.2-3,5"

If that's not what you need, please call me back. Thanks.

Tony Congram

Voice: 303-286-5890

Fax: 5866

anthony.r.congram@usa.conoco.com

<mailto:anthony.r.congram@usa.conoco.com>

**CC:** "Christopher, Jay S." <Jay.S.Christopher@usa.conoco.com>, "Walker, Constance M. (Tance)" <Constance.M.Walker@usa.conoco.com>

**From:** "Christopher, Jay S." <Jay.S.Christopher@usa.conoco.com> **To:** "MIKE Silverstein' <mcsilver@smtpgate.dphe.state.co.us>

**Date:** 3/27/01 3:26PM

**Subject:** RE: FCC Control Efficiency Question

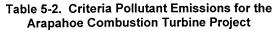
Mike - sorry I have been difficult to get a hold of recently (traveling), and glad Tony Congram was able to provide some information for you. I thought it might be useful to package things together in one note, plus add some more detail. I am also copying Jerry Dilley since he has been involved in this discussion in the past.

Are the cyclones in the FCCU an inherent part of the process? Yes, they are. The cyclones are not a control device in the sense of an add-on control device, but are a standard part of the design and operation of the unit. In fact, if one looked at a petroleum refining text, cyclones would be included in the basic diagrams of a FCCU. The cyclones cannot be bypassed and the FCCU could not operate without the cyclones in place and functioning. Also, no one would have an incentive to operate without cyclones, as that would increase losses of expensive catalyst to the atmosphere, and I do not believe that a FCCU could achieve any reasonable opacity limit without the cyclones operating appropriately.

More background on the FCCU emission factor used by Conoco - As you know, the AP-42 emission factor (Table 5.1-1) is 242 pounds particulate per 1000 barrels of fresh feed to the unit. AP-42 also includes a range of 93 - 340 pounds. Conoco uses the upper end factor (i.e., the most conservative value) of 340, and then applies a control efficiency factor to that rate. As mentioned in the AP-42 text forwarded to you on 3/26/01(paragraph following Section 5.1.2.2.2), AP-42 states "FCC particulate emissions are controlled by cyclones and/or electrostatic precipitators. Particulate control efficiencies are as high as 80 - 85%." Conoco has relied on that combination of factor and efficiency to estimate the particulate emissions from our FCCU.

A recent EPA publication reinforces Conoco's view that this control efficiency factor is reasonable. EPA's CHIEF website includes a program called the "Enhanced Particulate Matter Controlled Emissions Calculator," dated September 2000. This program is designed to determine control efficiencies for different particulate matter fractions. EPA lists three levels of cyclone efficiencies (high, medium, and low) in this database. Since coarser particulate fractions are controlled more effectively, the percentages shown for PM10 are conservative. EPA states that a medium efficiency cyclone is considered 85% effective for PM10 control. This, in our view, confirms the appropriateness of applying the 85% factor noted discussed in the initial paragraph.

Finally, we have also looked at our losses from a mass balance perspective. Conoco knows the average amount of catalyst that it adds to the unit, the average amount of spent catalyst that it sends offsite for reclamation, and the amount of catalyst that is suspended in the heavy oil bottoms from the unit (generally called slurry oil or clarified oil). The balance is unaccounted for losses that are assumed to be stack emissions. Using recent typical data, our mass data shows about 130 tons/year of these unaccounted for losses. In 2000, using the emission factor as above, we estimated about 165 tons/year of particulate emissions, providing further backup to our view that our numbers are conservative.


Therefore, Conoco feels that our use of the most conservative emission rate (340 instead of 242) and a reasonable efficiency factor (85%) results in a very reasonable derived emission factor of 51 pounds particulate per 1000 barrel feed.

I hope that this provides the information that you were looking for to resolve this issue. Thank you for your time in trying to get everyone on the same page.

Jay Christopher
Conoco Inc.
Air Program Leader - Denver
Rocky Mountain Business Unit
303-286-5731 (ETN 473)
303-286-5866 (fax)
jay.s.christopher@usa.conoco.com < jay.s.christopher@usa.conoco.com>

CC: "'jdilley@raqc.org'" <jdilley@raqc.org>

# **Public Service Company-Arapahoe Station**



|                  | Imal Imksfors Irom Bo<br>Turbics |       |  |  |  |  |  |  |  |
|------------------|----------------------------------|-------|--|--|--|--|--|--|--|
| Pollutant        | Ibihr                            | (ipxy |  |  |  |  |  |  |  |
| CO               | 290                              | 90.8  |  |  |  |  |  |  |  |
| NO <sub>x</sub>  | 62                               | 39.0  |  |  |  |  |  |  |  |
| SO <sub>2</sub>  | 0.4                              | 0.3   |  |  |  |  |  |  |  |
| PM <sub>10</sub> | 6                                | 4.0   |  |  |  |  |  |  |  |
| Pb               | 0                                | 0     |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>Annual emissions based on an annual heat input of 883,854 MMBTU/year.

### Notes:

CO carbon monoxide lb/hr = pounds per hour

 $NO_x$ nitrogen oxides

fine particulate matter  $PM_{10}$ 

sulfur dioxide

tons per year

Emissions exceed the CDPHE thresholds for dispersion modeling analysis for NOx, and CO. Although the emissions for PM<sub>10</sub> are below the modeling threshold, a modeling analysis was conducted to verify that the turbines would not cause or contribute to any violation of a PM<sub>10</sub> NAAQS. Dispersion modeling analyses were conducted for these pollutants, and those analyses are described in detail in later sections of this report.

### On-site PSD Increment Emission Inventory (Item #8 On APCD Review 5.7 Checklist)

The Arapahoe Combustion Turbine Project is not a major modification, nor will it produce significant impacts of any criteria pollutant, as described in detail in later sections of this report. Therefore, an inventory of on-site increment consuming sources was not required.

74.99 N

### Unit 1 Public Service Company of Colorado, Arapahoe Station Criteria and HAP Emissions

|                                                                                                                                      | Code:                                | S001                                            |                | Unit Code:                | B001              |              |                  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------|----------------|---------------------------|-------------------|--------------|------------------|
|                                                                                                                                      | Seasonal Fue                         |                                                 |                |                           | rmal Operation of | Unit         | Space Heat (%)   |
| Dec-Feb                                                                                                                              | Mar-May                              | Jun-Aug                                         | Sep-Nov        | Hours/Day                 | Days/Week         | Hours/year   |                  |
| 25                                                                                                                                   | 26                                   | 25                                              | 24             | 24                        | 7                 | 8760         | 0                |
|                                                                                                                                      | BOILER SPECI                         |                                                 |                |                           | STA               | CK DATA      |                  |
| Furnace Type:                                                                                                                        | Top-fired wet bot                    |                                                 |                | Height (ft)               | ***               |              | 250              |
| Manufacturer:                                                                                                                        | Babcock & Wilco                      | x                                               |                | Inside Diameter (         | (ft)              |              | 15.75            |
| Model & Serial #:                                                                                                                    | NB 16230                             |                                                 |                | Exhaust Flow Ra           | te (acfm)         |              |                  |
| Unit Description:                                                                                                                    |                                      | P and SO3 gas con                               | ditioning      | Normal                    | 204,000           | Max          | 240,000          |
| First Service or Last                                                                                                                |                                      | 10/7/50                                         |                | Velocity (fps)            |                   |              | 17.5             |
| Max Continuous Ra                                                                                                                    | ting (MMBtu/hr) :                    | 754.8                                           | Coal           | Calculated or Sta         | ck Test (C/ST)    |              | С                |
|                                                                                                                                      | <del></del>                          |                                                 | Natural Gas    | Exhaust Tempera           |                   |              | 265              |
|                                                                                                                                      | laximum Hourly Fu                    |                                                 |                |                           | Content (if modi  | fied) (%)    |                  |
| Fuel                                                                                                                                 |                                      | Unit                                            | Rate           | Normal                    | 7                 | Max          | 9                |
|                                                                                                                                      | ous Coal                             | ton/hr                                          | 34             | Orientation of Re         |                   |              | Up               |
| Natur                                                                                                                                | al Gas                               | Mcf/hr                                          | 750            | Rainhat or Other          | Obstruction       |              | None             |
|                                                                                                                                      |                                      |                                                 |                |                           | Control 7         | echnology, % |                  |
| Does the boiler/furn                                                                                                                 | ace have control tec                 | hnology (Y/N) ?                                 | Y              | Control                   | NOx               | PM           | SOx              |
|                                                                                                                                      |                                      |                                                 | ESI            | P-SO3 conditioning        | 0                 | 99.03        | 0                |
|                                                                                                                                      |                                      |                                                 |                | -                         |                   |              |                  |
| Miscell                                                                                                                              |                                      | Conde                                           |                |                           | orbers            | Catalytic/Ti | nermal Oxidation |
| 2000-400                                                                                                                             | NONE                                 | 2000-401                                        | NONE           | 2000-402                  | NONE              | 2000-403     | NONE             |
|                                                                                                                                      |                                      |                                                 |                |                           |                   |              |                  |
| Cyclones/Setti                                                                                                                       |                                      | Electrostatic                                   |                |                           | tion Systems      |              | s/Fabric Filters |
| 2000-404                                                                                                                             | NONE                                 | 2000-405                                        | C001           | 2000-406                  | NONE              | 2000-407     | NONE             |
|                                                                                                                                      |                                      |                                                 | OPERATING      | PARAMETERS                |                   |              |                  |
|                                                                                                                                      | 1994                                 |                                                 |                | 1                         | P                 | otential     |                  |
| Coal (tons) =                                                                                                                        |                                      |                                                 | 136,821        | Coal (tons) =             |                   |              |                  |
| Max Sulfur Content                                                                                                                   | (%) =                                |                                                 | 0.50           | Max Sulfur Cont           | (0()              |              | 297,840          |
| Max Ash Content (%                                                                                                                   |                                      |                                                 | 10.00          | Max Ash Conten            |                   |              | 1.00             |
| HHV Coal (BTU/lb)                                                                                                                    |                                      |                                                 |                | 11,100 HHV Coal (BTU/b) = |                   |              | 10.00            |
| Natural Gas (Mcf) =                                                                                                                  |                                      |                                                 |                |                           |                   | 11,100       |                  |
| Max Sulfur Content                                                                                                                   |                                      |                                                 |                | Natural Gas (Mc           |                   | 6,570,000    |                  |
| Max Ash Content (%                                                                                                                   |                                      |                                                 | NA<br>NA       | Max Sulfur Conte          |                   |              | NA<br>NA         |
| HHV Gas (BTU/scf)                                                                                                                    |                                      |                                                 | 998            | Max Ash Conten            | V Gas (BTU/scf) = |              |                  |
| Operation Hours =                                                                                                                    |                                      |                                                 | 7,985          | Operation Hours           |                   |              | 998              |
|                                                                                                                                      |                                      |                                                 | 7,783          | Operation riours          |                   |              | 8,760            |
|                                                                                                                                      |                                      |                                                 | EMISSION C.    | ALCULATIONS               |                   |              |                  |
|                                                                                                                                      | Source of                            | Units of                                        |                |                           | Actual            | PTE          | PTE              |
| Pollutant                                                                                                                            | Emission                             | Emission                                        |                | n Factors                 | Emissions         | 100% Coal    | 100% Natural Gas |
|                                                                                                                                      | Factor                               | Factor                                          | Coal           | Natural Gas               | (ton/yr)          | (ton/yr)     | (ton/yr)         |
| NOx                                                                                                                                  | AP-42'                               | lb/ton                                          | 21.7           |                           | 1,487             | 3,232        | <u> </u>         |
|                                                                                                                                      | AP-42 <sup>2</sup>                   | Ib/MMCF                                         |                | 550                       |                   |              | 1,807            |
| co                                                                                                                                   | AP-42'                               | lb/ton                                          | 0.50           |                           | 34                | 74           |                  |
|                                                                                                                                      | AP-42 <sup>2</sup>                   | lb/MMCF                                         |                | 40                        |                   | 1            | 131              |
| NMTOC                                                                                                                                | AP-42'                               | lb/ton                                          | 0.06           |                           | 4                 | 9            |                  |
|                                                                                                                                      | AP-42                                | lb/MMCF                                         |                | 1.7                       |                   | Į.           | 6                |
|                                                                                                                                      | AP-42'                               | lb/ton                                          | 100.00         |                           | 66                | 331          |                  |
| PM                                                                                                                                   |                                      |                                                 |                |                           |                   |              |                  |
|                                                                                                                                      | AP-42 <sup>2</sup>                   | lb/MMCF                                         |                | 3.00                      |                   |              | 10               |
|                                                                                                                                      | AP-42*                               | lb/MMCF<br>% PM                                 | 67.00          |                           | 44                | 222          | 10               |
| PM <sub>10</sub>                                                                                                                     | AP-42*<br>AP-42*                     | Ib/MMCF<br>% PM<br>Ib/MMCF                      |                | 3.00                      | 44                | 222          | 10               |
| PM <sub>10</sub>                                                                                                                     | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            | 67.00<br>17.50 | 3.00                      | 1,237             | 222          |                  |
| PM <sub>te</sub>                                                                                                                     | AP-42*<br>AP-42*                     | Ib/MMCF<br>% PM<br>Ib/MMCF                      |                |                           |                   |              |                  |
| PM <sub>ie</sub> SO <sub>x</sub> <sup>3</sup> Antimony                                                                               | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 10               |
| PM <sub>ie</sub> SO <sub>a</sub> <sup>3</sup> Antimony Arsenic                                                                       | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 10               |
| PM <sub>ie</sub> SO <sub>a</sub> <sup>3</sup> Antimony Arsenic Beryllium                                                             | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 10               |
| PM <sub>ie</sub> SO <sub>x</sub> <sup>3</sup> Antimony Arsenic Beryllium Cadmium                                                     | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 10               |
| PM <sub>10</sub> SO <sub>6</sub> <sup>3</sup> Antimony Arsenic Beryllium Cadmium Chromium                                            | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 10               |
| PM <sub>ie</sub> SO <sub>a</sub> <sup>3</sup> Antimony Arsenic Beryllium Cadmium Chromium                                            | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 10               |
| PM <sub>1e</sub> SO <sub>e</sub> <sup>3</sup> Antimony Arsenic Beryllium Cadmium Cotomium                                            | AP-42*<br>AP-42*<br>AP-42*           | lb/MMCF<br>% PM<br>lb/MMCF<br>lb/ton            |                | 3.00                      |                   |              | 2                |
| PM <sub>10</sub> SO <sub>3</sub> Antimony Arsenic Beryllium Cadmium Chromium Chobalt Lead                                            | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | Ib/MMCF<br>% PM<br>Ib/MMCF<br>Ib/ton<br>Ib/MMCF | 17.50          | 3.00                      | 1,237             | 2,606        | 10               |
| PM PM <sub>10</sub> SO, Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Mercury                                              | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | Ib/MMCF<br>% PM<br>Ib/MMCF<br>Ib/ton<br>Ib/MMCF | 17.50          | 3.00                      | 1,237             | 2,606        | 2                |
| PM <sub>16</sub> SO <sub>6</sub> <sup>3</sup> Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese                      | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | Ib/MMCF<br>% PM<br>Ib/MMCF<br>Ib/ton<br>Ib/MMCF | 17.50          | 3.00                      | 1,237             | 2,606        | 2                |
| PM <sub>11</sub> SO <sub>2</sub> Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury                           | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | Ib/MMCF<br>% PM<br>Ib/MMCF<br>Ib/ton<br>Ib/MMCF | 17.50          | 3.00                      | 1,237             | 2,606        | 2                |
| PM <sub>is</sub> SO, <sup>3</sup> Antimony Ansenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel                   | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | Ib/MMCF<br>% PM<br>Ib/MMCF<br>Ib/ton<br>Ib/MMCF | 17.50          | 3.00                      | 1,237             | 2,606        | 2                |
| PM <sub>is</sub> SO <sub>s</sub> Antimony  Arsenic  Beryllium  Cadmium  Chromium  Cobalt  Lead  Manganese  Mercury  Nickel  Selenium | AP-42*<br>AP-42*<br>AP-42'<br>AP-42* | Ib/MMCF<br>% PM<br>Ib/MMCF<br>Ib/ton<br>Ib/MMCF | 17.50          | 3.00                      | 1,237             | 2,606        | 2                |

- Section 1.1 Bituminous and Subbituminous Coal Combustion; Pulverized coal fired, dry bottom, wall fired Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, uncontrolled Includes SO, conditioning emissions

  PM<sub>10</sub> is 67% of PM (Electrostatic precipitator controlled emissions, AP-42 Table 1.1-5)

# Unit 2 Public Service Company of Colorado, Arapahoe Station Criteria and HAP Emissions

| Stack Identification (             |                     | 5001                |               | Unit Code:                  | B002              |               |                                                  |
|------------------------------------|---------------------|---------------------|---------------|-----------------------------|-------------------|---------------|--------------------------------------------------|
|                                    | Seasonal Fue        | l Usage (%)         |               | No                          | rmal Operation of | Unit          | Space Heat (%)                                   |
| Dec-Feb                            | Mar-May             | Jun-Aug             | Sep-Nov       | Hours/Day                   | Days/Week         | Hours/year    | 1                                                |
| 28                                 | 30                  | 27                  | 15            | 24                          | 7                 | 8760          | 0                                                |
|                                    | BOILER SPECI        | FICATIONS           |               |                             | STA               | CK DATA       |                                                  |
| Furnace Type:                      | Top-fired Wet Bo    |                     |               | Height (ft)                 |                   | CKDATA        | 250                                              |
| Manufacturer:                      | Babcock & Wilco     | ox                  |               | Inside Diameter (           | ft)               |               | 15.75                                            |
| Model & Serial #:                  | NB 16231            |                     |               | Exhaust Flow Ra             |                   |               | 15.75                                            |
| Unit Description:                  | Top fired with ES   | SP and SO3 gas cond | litioning     | Normal                      | 204,000           | Max           | 240,000                                          |
| First Service or Last              | Mod. Date:          | 3/1/51              | Ū             | Velocity (fps)              |                   |               | 17.5                                             |
| Max Continuous Rati                | ing (MMBtu/hr):     | 754.8               | Coal          | Calculated or Sta           | ck Test (C/ST)    |               | C                                                |
|                                    |                     | 748.5               | Natural Gas   | Exhaust Tempera             | iture (F)         |               | 265                                              |
| M                                  | aximum Hourly Fu    | el Usage (units/hr) |               |                             | Content (if modi  | fied) (%)     |                                                  |
| Fuel 7                             | Гуре                | Unit                | Rate          | Normal                      | 7                 | Max           | 9                                                |
| Bitumino                           |                     | ton/hr              | 34            | Orientation of Re           | lease             |               | Up                                               |
| Natura                             | l Gas               | Mcf/hr              | 750           | Rainhat or Other            | Obstruction       |               | None                                             |
|                                    |                     |                     |               |                             | C17               | C11 0/        |                                                  |
| Does the boiler/furna              | ce have control tec | hnology (VAI) 2     | Y             | Control                     |                   | Fechnology, % |                                                  |
| Socs are concentanta               | oc nave conduit tec | iniology (1/14) !   |               | -SO3 conditioning           | NOx<br>0          | PM<br>97,92   | SOx                                              |
|                                    |                     |                     | ESP           | -505 continuoning           | U                 | 91.92         | 0                                                |
| Miscella                           | aneous              | Conde               | nsers         | A.de.                       | orbers            | Catalysis /T  | hermal Oxidation                                 |
| 2000-400                           | NONE                |                     | NONE          | 2000-402                    | NONE              | 2000-403      | NONE                                             |
|                                    |                     | ·- ·-•              |               |                             |                   | 2000-103      | HONE                                             |
| Cyclones/Settli                    | ing Chambers        | Electrostatic l     | Precipitators | Wet Collec                  | tion Systems      | Baghouse      | es/Fabric Filters                                |
| 2000-404                           | NONE                |                     | C002          | 2000-406                    | NONE              | 2000-407      | NONE                                             |
|                                    |                     |                     |               | PARAMETERS                  |                   |               |                                                  |
|                                    | 1994                |                     | OPERATING     | FARAMETERS                  |                   | otential      |                                                  |
|                                    | 122-                | ·                   |               |                             | r                 | otential      |                                                  |
| Coal (tons) =                      |                     |                     | 148,645       | Coal (tons) =               |                   |               | 297,840                                          |
| Max Sulfur Content                 |                     |                     | 0.50          | Max Sulfur Cont             |                   |               | 1.00                                             |
| Max Ash Content (%                 |                     |                     | 10.00         | Max Ash Conten              |                   |               | 10.00                                            |
| HHV Coal (BTU/lb)                  | =                   |                     | 11,100        | HHV Coal (BTU/lb) =         |                   |               | 11,100                                           |
| Natural Gas (Mcf) =                | •                   |                     | 6,274         | Natural Gas (Mc             |                   |               | 6,570,000                                        |
| Max Sulfur Content                 |                     |                     | NA            | Max Sulfur Content (%) = NA |                   |               |                                                  |
| Max Ash Content (%                 |                     |                     | NA            | Max Ash Conten              |                   |               | NA                                               |
| HHV Gas (BTU/scf)                  | =                   |                     | 998           | HHV Gas (BTU/               |                   |               | 998                                              |
| Operation Hours =                  |                     |                     | 7,246         | Operation Hours             | -                 |               | 8,760                                            |
|                                    |                     |                     | EMISSION C.   | ALCULATIONS                 |                   |               |                                                  |
|                                    | Source of           | Units of            |               |                             |                   | T             |                                                  |
| Pollutant                          | Emission            | Emission            | E-1-1-        | . r                         | Actual            | PTE           | PTE                                              |
| Pollucant                          | Factor              | Factor              | Coal          | n Factors<br>Natural Gas    | Emissions         | 100% Coal     | 100% Natural Gas                                 |
| NOx                                | AP-42'              | lb/ton              | 21.7          | IVALUIAI GAS                | (ton/yr)<br>1,615 | (ton/yr)      | (ton/yr)                                         |
|                                    | AP-42 <sup>2</sup>  | lb/MMCF             | 21./          | 550                         | 1,015             | 3,232         | 1,807                                            |
| СО                                 | AP-421              | lb/ton              | 0.50          |                             | 37                | 74            | 1,007                                            |
|                                    | AP-42 <sup>2</sup>  | 1b/MMCF             | 0.50          | 40                          | "                 | "             | 131                                              |
| NMTOC                              | AP-421              | lb/ton              | 0.06          | <del></del>                 | 4                 | 9             | 131                                              |
|                                    | AP-42 <sup>2</sup>  | Ib/MMCF             | 00            | 1.7                         |                   | '             | 6                                                |
| PM                                 | AP-421              | lb/ton              | 100.00        | <del>-</del>                | 155               | 331           | <del>                                     </del> |
|                                    | AP-42 <sup>2</sup>  | lb/MMCF             |               | 3.00                        |                   |               | 10                                               |
| PM <sub>10</sub>                   | AP-42*              | % PM                | 67.00         |                             | 104               | 222           | <del>                                     </del> |
|                                    | AP-422              | Ib/MMCF             |               | 3.00                        |                   | 1,            | 10                                               |
| so,3                               | AP-42'              | lb/ton              | 17.50         |                             | 1,341             | 2,606         | †                                                |
|                                    | AP-422              | lb/MMCF             |               | 0.60                        | 1                 | 1             | 2                                                |
| Antimony                           |                     |                     |               |                             |                   |               |                                                  |
| Arsenic                            |                     |                     |               |                             |                   | 1             | 1                                                |
| Beryllium                          |                     |                     |               |                             |                   | T             |                                                  |
| Cadmium                            |                     |                     |               |                             |                   | 1             | 1                                                |
| Chromium                           |                     |                     |               |                             |                   | 1             | 1                                                |
| Cobalt                             |                     |                     |               | L                           |                   |               | 1                                                |
| Lead                               | AP-42               | 1b/10^12 BTU        | 507           | NA                          | 0.017             | 0.037         | NA NA                                            |
| Manganese                          |                     |                     |               |                             |                   | 1             | 1                                                |
| Mercury                            |                     |                     |               | 1                           |                   | T             |                                                  |
| Nickel                             | 1.                  |                     |               | l                           |                   |               |                                                  |
| INCACI                             |                     | . —                 |               |                             |                   | ·             | <del>                                     </del> |
|                                    |                     |                     |               | l .                         | Į.                | 1             | 1                                                |
| Selenium<br>Thallium               |                     |                     |               |                             |                   | <del> </del>  | <del> </del>                                     |
| Selenium Thallium Formaldehyde POM |                     |                     |               |                             |                   |               |                                                  |

- Section 1.1 Bituminous and Subbituminous Coal Combustion; Pulverized coal fired, dry bottom, wall fired Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, uncontrolled Includes SO, conditioning emissions PM<sub>10</sub> is 67% of PM (Electrostatic precipitator controlled emissions, AP-42 Table 1.1-5)

TitleIL

|                                         | Duk                                      | lic Service C             | Uni<br>Company of (   | it 3<br>Colorado, Ai                  | anahoa Sta           | tion                                             | I                        |      |
|-----------------------------------------|------------------------------------------|---------------------------|-----------------------|---------------------------------------|----------------------|--------------------------------------------------|--------------------------|------|
|                                         | rub                                      |                           |                       | LAP Emissio                           |                      | uon                                              |                          |      |
| Stack Identification (                  | Code :                                   | S002                      |                       | Unit Code:                            | B003                 |                                                  |                          |      |
|                                         | Seasonal Fuel                            | Usage (%)                 |                       | No                                    | rmal Operation of    | Unit                                             | Space Heat (%)           |      |
| Dec-Feb<br>25                           | Mar-May<br>28                            | Jun-Aug<br>24             | Sep-Nov<br>23         | Hours/Day<br>24                       | Days/Week<br>7       | Hours/year<br>8760                               | 0                        |      |
|                                         | BOILER SPECIA                            | ICATIONS                  |                       |                                       | STA                  | CK DATA                                          |                          |      |
| Furnace Type:                           | Top-fired                                |                           |                       | Height (ft)                           |                      |                                                  | 250                      |      |
| Manufacturer:<br>Model & Serial #:      | Babcock & Wilco:<br>NB 16911             | •                         |                       | Inside Diameter (<br>Exhaust Flow Rat |                      |                                                  | 15.75                    |      |
| Unit Description:                       | Top Fired with fab                       | ric filter dust collec    | ctors(FFDC)           | Normal                                | 211,063              | Max                                              | 255,067                  |      |
| First Service or Last                   |                                          | 11/17/51                  | C1                    | Velocity (fps)                        | 1 T . (C/CT)         |                                                  | 18.1                     |      |
| Max Continuous Ra                       | ing (MMBtivnr) :                         |                           | Coal<br>Natural Gas   | Calculated or Star<br>Exhaust Tempera |                      |                                                  | C<br>268                 |      |
|                                         | faximum Hourly Fue                       |                           |                       |                                       | Content (if modif    | ied) (%)                                         | 200                      |      |
|                                         | Туре                                     | Unit                      | Rate                  | Normal                                | 7                    | Max                                              | 9                        |      |
|                                         | ous Coal<br>al Gas                       | ton/hr<br>Mcf/hr          | 34<br>750             | Orientation of Re<br>Rainhat or Other |                      |                                                  | Up<br>None               |      |
|                                         |                                          |                           |                       | I                                     |                      | Paralle of                                       |                          |      |
| Does the boiler/furn                    | ace have control tech                    | nology (Y/N) ?            | Y                     | Control                               | NOx                  | Fechnology, %<br>PM                              | SOx                      |      |
| 3000014819                              |                                          | -07 (-11.7)               | •                     | Baghouse                              | 0                    | 99.9                                             | 0                        |      |
|                                         | 1                                        |                           |                       |                                       |                      |                                                  |                          |      |
| Miscel<br>2000-400                      | laneous<br>NONE                          | Conde<br>2000-401         | nsers<br>NONE         |                                       | orbers<br>NONE       | Catalytic/Th<br>2000-403                         | nermal Oxidation NONE    |      |
| Curl/C ::                               | line Chambers                            | E1                        | D:-:                  |                                       | C                    |                                                  |                          |      |
| Cyclones/Sett<br>2000-404               | ling Chambers<br>NONE                    | Electrostatic<br>2000-405 | Precipitators<br>NONE | Wet Collec<br>2000-406                | tion Systems<br>NONE | Baghouse<br>2000-407                             | s/Fabric Filters<br>C003 |      |
|                                         |                                          |                           |                       | PARAMETERS                            |                      |                                                  |                          |      |
|                                         | 1994                                     |                           |                       |                                       | F                    | otential                                         |                          |      |
| Coal (tons) =                           |                                          |                           | 141,609               | Coal (tons) =                         |                      |                                                  | 297,840                  | ł    |
| Max Sulfur Content                      |                                          |                           | 0.50                  | Max Sulfur Cont                       |                      |                                                  | 1.00                     |      |
| Max Ash Content (9<br>HHV Coal (BTU/lb) |                                          |                           | 10.00<br>11,100       |                                       |                      |                                                  | 10.00<br>11,100          |      |
| Natural Gas (Mcf) =                     |                                          |                           | 4,742                 | Natural Gas (Mc                       | ,                    |                                                  | 6,570,000                |      |
| Max Sulfur Content                      |                                          |                           | NA                    | Max Sulfur Cont                       |                      |                                                  | NA                       |      |
| Max Ash Content (9<br>HHV Gas (BTU/scf  |                                          |                           | NA<br>998             | Max Ash Conten<br>HHV Gas (BTU/       |                      |                                                  | NA<br>998                |      |
| Operation Hours =                       | ,-                                       |                           | 7,925                 | Operation Hours                       |                      |                                                  | 8,760                    |      |
|                                         |                                          |                           | EMISSION C            | ALCULATIONS                           |                      |                                                  |                          |      |
|                                         | Source of                                | Units of                  | 1                     |                                       | Actual               | PTE                                              | PTE                      | ll . |
| Pollutant                               | Emission                                 | Emission                  |                       | n Factors                             | Emissions            | 100% Coal                                        | 100% Natural Gas         |      |
| NOx                                     | Factor<br>AP-42 <sup>1</sup>             | Factor<br>lb/ton          | Coal 21.7             | Natural Gas                           | (ton/yr)<br>1,538    | (ton/yr)                                         | (ton/yr)                 | h. ~ |
|                                         | AP-42 <sup>2</sup>                       | ib/MMCF                   | l. ***                | 550                                   | 1,338                | 3,232                                            | 1,807                    | 46.4 |
| СО                                      | AP-42'                                   | lb/ton                    | 0.50                  |                                       | 35                   | 74                                               |                          |      |
| NMTOC                                   | AP-42 <sup>2</sup><br>AP-42 <sup>4</sup> | lb/MMCF<br>lb/ton         | 0.06                  | 40                                    | 4                    | 9                                                | 131                      | 1    |
|                                         | AP-42 <sup>2</sup>                       | Ib/MMCF                   |                       | 1.7                                   | }                    |                                                  | 6                        |      |
| PM                                      | AP-42'                                   | lb/ton                    | 100.00                |                                       | 7                    | 331                                              |                          |      |
| PM <sub>10</sub>                        | AP-42 <sup>2</sup><br>AP-42 <sup>3</sup> | lb/MMCF<br>% PM           | 92.00                 | 3.00                                  | 7                    | 304                                              | 10                       | 3    |
|                                         | AP-42 <sup>2</sup>                       | lb/MMCF                   | 2.00                  | 3.00                                  | ′                    | 3043                                             | 10                       |      |
| SOx                                     | AP-421                                   | lb/ton                    | 17.50                 |                                       | 1,239                | 2,606                                            |                          | 50 B |
| Antimony                                | AP-42 <sup>2</sup>                       | lb/MMCF                   |                       | 0.60                                  |                      | <del> </del>                                     | 2 ,                      | 1    |
| Arsenic                                 |                                          |                           |                       | <u> </u>                              | <u> </u>             | <del>                                     </del> | <u> </u>                 | 1    |
| Beryllium                               |                                          |                           |                       | ļ <u> </u>                            |                      |                                                  |                          | 1    |
| Cadmium                                 | <del></del>                              |                           | ļ                     | ļ                                     |                      |                                                  |                          | -    |
| Cobalt                                  |                                          | <del> </del>              | <del> </del>          | <del> </del>                          |                      | +                                                |                          | 1    |
| CODZII                                  | AP-42                                    | lb/10^12 BTU              | 507                   | NA                                    | 0.001                | 0.037                                            | NA NA                    | 1    |
| Lead                                    |                                          |                           |                       |                                       |                      |                                                  |                          | 1    |
| Lead<br>Manganese                       |                                          |                           |                       |                                       | 4                    | ł                                                |                          | II . |
| Lead<br>Manganese<br>Mercury            |                                          |                           |                       | <del> </del>                          |                      | +                                                |                          | 11   |
| Lead<br>Manganese                       |                                          |                           |                       |                                       |                      |                                                  |                          | 1    |
| Lead<br>Manganese<br>Mercury<br>Nickel  |                                          |                           |                       |                                       |                      |                                                  |                          |      |

#### Footnotes

- Section 1.1 Bituminous and Subbituminous Coal Combustion; Pulverized coal fired, dry bottom, wall fired Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, uncontrolled PM<sub>10</sub> is 92% of PM (Baghouse controlled emissions, AP-42 Table 1.1-5)

Title

|                                              |                                 |                                                        | Un                        |                               |                                          |                                                                    |
|----------------------------------------------|---------------------------------|--------------------------------------------------------|---------------------------|-------------------------------|------------------------------------------|--------------------------------------------------------------------|
| ation                                        | rapahoe Stati                   | Colorado, Ai                                           | Company of criteria and H | lic Service (<br>C            | Pub                                      |                                                                    |
|                                              | 8004                            |                                                        |                           | S002                          | ode :                                    | Stack Identification C                                             |
| f Unit   Space Heat (%)                      | mal Operation of U              |                                                        |                           |                               | Seasonal Fuel                            | - I deliditation c                                                 |
| Hours/year                                   | Days/Week                       | Hours/Day                                              | Sep-Nov                   | Jun-Aug                       | Маг-Мау                                  | Dec-Feb<br>25                                                      |
| 8760 0                                       | 7                               | 24                                                     | 24                        | 25                            | 26<br>BOILER SPECII                      |                                                                    |
| ACK DATA 250                                 | STACE                           | Height (ft)                                            | air                       | om with under fire            |                                          | Furnace Type:                                                      |
| 15.75                                        | e (acfm)                        | Inside Diameter (<br>Exhaust Flow Rat                  |                           |                               | Babcock & Wilco<br>HSB 18469             | Manufacturer:<br>Model & Serial #:                                 |
| Max 469,812<br>32.9                          | 384,033                         | Normal<br>Velocity (fps)                               | , DSI                     | overfire air, FFDC<br>8/22/55 |                                          | Unit Description:<br>First Service or Last !                       |
| c                                            |                                 | Calculated or Sta                                      | Coal                      | 1709.4                        | ng (MMBtu/hr) :                          | Max Continuous Rati                                                |
| 270                                          | ture (F)<br>Content (if modifie | Exhaust Tempera                                        | Natural Gas               | 1706.58                       | ximum Hourly Fue                         | Ma                                                                 |
| Max 9                                        | 7                               | Normal                                                 | Rate                      | Unit                          | уре                                      | Fuel T                                                             |
| Up                                           |                                 | Orientation of Re                                      | 77                        | ton/hr<br>Mcf/hr              |                                          | Bitumino<br>Natural                                                |
| None                                         | Obstruction                     | Rainhat or Other                                       | 1710                      | MCUAR                         | Gas                                      | Natura                                                             |
| Technology, %                                |                                 | C 1                                                    |                           | malam, (SIAD 6                | na hava general ( )                      | Does the boiles/6                                                  |
| PM SOx<br>99.9 20                            | NOx<br>60.3                     | Control<br>Low NOx, & DSI                              | Y<br>Baghouse,            | unology (Y/N)?                | ce nave control tech                     | Does the boiler/furnac                                             |
| Catalytic/Thermal Oxidation<br>2000-403 NONE | orbers<br>NONE 2                |                                                        | nsers<br>NONE             | Conde<br>2000-401             | C004,C005                                | Miscella<br>2000-400                                               |
| Baghouses/Fabric Filters 2000-407 C006       | ion Systems                     |                                                        | Precipitators<br>NONE     | Electrostatic<br>2000-405     | ng Chambers<br>NONE                      | Cyclones/Settlin<br>2000-404                                       |
|                                              |                                 | ARAMETERS                                              | OPERATING I               |                               |                                          |                                                                    |
| Potential                                    | Pote                            |                                                        |                           |                               | 1994                                     | ······                                                             |
| 674,520<br>1.00<br>10.00                     | (%) =                           | Coal (tons) =<br>Max Sulfur Conte<br>Max Ash Content   | 323,480<br>0.50<br>10.00  |                               | ) =                                      | Coal (tons) =  Max Sulfur Content (*)  Max Ash Content (*)         |
| 11,100<br>14,979,600<br>NA                   | ) =                             | HHV Coal (BTU)<br>Natural Gas (Mcf<br>Max Sulfur Conto | 11,100<br>34,237<br>NA    |                               |                                          | HHV Coal (BTU/lb) :<br>Natural Gas (Mcf) =<br>Max Sulfur Content ( |
| NA<br>998                                    | (%) =<br>scf) =                 | Max Ash Content<br>HHV Gas (BTU/s                      | NA<br>998<br>8,490        |                               |                                          | Max Ash Content (%) HHV Gas (BTU/scf) Operation Hours =            |
| 8,760                                        |                                 | Operation Hours                                        |                           |                               |                                          |                                                                    |
| PTE PTE                                      | Actual                          | - LECOLATIONS                                          | 2                         | Units of                      | Source of                                |                                                                    |
| 100% Coal 100% Natural Gas                   | Emissions                       | n Factors                                              | Emission                  | Emission                      | Emission                                 | Pollutant                                                          |
| (ton/yr) (ton/yr)                            | (ton/yr)                        | Natural Gas                                            | Coal                      | Factor                        | Factor<br>AP-42 <sup>1</sup>             | NOx                                                                |
| 4,492                                        | 1,397                           | 550                                                    | 21.7                      | lb/ton<br>lb/MMCF             | AP-42*                                   | 11-VA                                                              |
| 169                                          | 82                              |                                                        | 0.50                      | lb/ton                        | AP-42'<br>AP-42 <sup>2</sup>             | со                                                                 |
| 234                                          | 10                              | 40                                                     | 0.06                      | lb/MMCF<br>lb/ton             | AP-42'                                   | NMTOC                                                              |
| 16                                           |                                 | 1.7                                                    | 100.00                    | lb/MMCF<br>lb/ton             | AP-42 <sup>2</sup><br>AP-42 <sup>1</sup> | PM                                                                 |
| 749 748                                      | 16                              | 3.00                                                   | 100.00                    | lb/MMCF                       | AP-42 <sup>1</sup><br>AP-42 <sup>1</sup> |                                                                    |
| 689 726                                      | 15                              |                                                        | 92.00                     | % PM<br>Ib/MMCF               | AP-42'<br>AP-42'                         | PM <sub>10</sub>                                                   |
| 6,589                                        | 2,264                           | 3.00                                                   | 17.50                     | lb/ton                        | AP-421                                   | SO <sub>2</sub>                                                    |
| 2,953                                        |                                 | 0.60                                                   |                           | lb/MMCF                       | AP-42 <sup>2</sup>                       | Antimony                                                           |
| +                                            |                                 |                                                        |                           |                               |                                          | Antimony<br>Arsenic                                                |
|                                              |                                 |                                                        |                           |                               |                                          | Beryllium                                                          |
|                                              |                                 |                                                        |                           |                               |                                          | Cadmium<br>Chromium                                                |
| +                                            |                                 | <del></del>                                            |                           |                               |                                          | Cobalt                                                             |
|                                              |                                 | NA                                                     | 507                       | lb/10^12 BTU                  | AP-42                                    | Lead                                                               |
| 0.084 NA                                     | 0.002                           |                                                        |                           |                               |                                          |                                                                    |
| 0.084 NA                                     | 0.002                           |                                                        |                           |                               |                                          | Manganese                                                          |
| 0.084 NA                                     | 0.002                           |                                                        |                           |                               |                                          | Manganese<br>Mercury<br>Nickel                                     |
| 0.084 NA                                     | 0.002                           |                                                        |                           |                               |                                          | Mercury                                                            |
| 0.084 NA                                     | 0.002                           |                                                        |                           |                               |                                          | Mercury<br>Nickel                                                  |

- Section 1.1 Bituminous and Subbituminous Coal Combustion; Pulverized coal fired, dry bottom, tangentially fired Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, Controlled Low NOx burners PM<sub>10</sub> is 92% of PM (Baghouse controlled emissions, AP-42 Table 1.1-5)

## **Public Service Company-Cherokee Station**

| Seasonal Fuel Usage (%)   Normal Operation of Unit   Space Heat (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dec-Feb   Mar-May   Jun-Aug   Sep-Nov   Hours/Day   Days/Week   Hours/year   24   7   8,760   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOILER SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Height (ft)   300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Inside Diameter (ft)   |
| it Description: N/A st Service or Last Mod. Date: Aug. 12, 1957 st Scrotienuous Rating (mmBTU/hr): 1,392 Coal 1,259 Natural Gas Maximum Hourly Fuel Usage (units/hr)  Maximum Hourly Fuel Usage (units/hr)  Rhormal 789,395 Max 937,595 Velocity (fps) 65,5 Calculated or Stack Test (C/ST) ST Exhaust Temperature (F) 265 Exhaust Moisture Content (if modified) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| st Service or Last Mod. Date: Aug. 12, 1957 x Continuous Rating (mmBTU/hr): 1,392 Coal 1,259 Natural Gas  Maximum Hourly Fuel Usage (units/hr): Stabaust Temperature (F) Exhaust Temperature (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ax Continuous Rating (mmBTU/hr): 1,392 Coal 1,259 Natural Gas  Maximum Hourly Fuel Usage (units/hr)  Exhaust Temperature (F) 265  Exhaust Moisture Content (if modified) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Maximum Hourly Fuel Usage (units/hr) Exhaust Moisture Content (if modified) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bituminous Coal ton/hr 61.8 Orientation of Release Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Natural Gas mct/hr 1,240 Rainhat or Other Obstruction None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Control Technology, %  Does the boilet/furnace have control technology (Y/N) Y Control NOx PM SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ooes the boiler/furnace have control technology (Y/N) Y Control NOx PM SOx Baghouse 0 99.9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Miscellaneous Condensers Adsorbers Catalytic/Thermal Oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2000-400 NONE 2000-401 NONE 2000-402 NONE 2000-403 NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cyclones/Settling Chambers Electrostatic Precipitators Wet Collection Systems Baghouses/Fabric Filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 000-404 NONE 2000-405 NONE 2000-406 NONE 2000-407 C001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OPERATING PARAMETERS 1994 Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| oal (ton) = 371,282   Coal (ton) = 541  vg. Sulfur Content (%) = 0.39   Avg. Sulfur Content (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Avg. Ash Content (%) = 9.95 Avg. Ash Content (%) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HV Coal (BTU/lb) =   11,262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Avg. Sulfur Content (%) = N/A Avg. Sulfur Content (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Avg. Ash Content (%) = N/A Avg. Ash Content (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HHV Gas (BTU/scf) = 1,015 HHV Gas (BTU/scf) = 1 Operation Hours = 7,771 Operation Hours = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EMISSION CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Source of Units of Actual PTE PTE Pollutant Emission Emission Emission Factors Emissions 100% Coal 100% Natural C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Factor   Factor   Coal   Natural Gas   (ton/yr)   (to   |
| CO AP-42(1) lb/ton 0.50 96 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AP-42(2) lb/mmCF 40 / 92 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MTOC AP-42(1) lb/ton 0.06 11 16 16 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PM AP-42(1) lb/ton 99.50 18 610 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AP-42(2) lb/mmCF lb/A 3 16<br>PM <sub>10</sub> AP-42(3) % PM 92.00 17 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AP-42(2)   Ib/mmCF   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SOx AP-42(1) lb/ton 13.65 / 2,534 6,707 6065 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AP-42(2)   lb/mmCF   $\sqrt{385} = \sqrt{18}$   0.60   $\sqrt{275}$   3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Seryllium VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Admium V 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ead AP-42 lb/10^12 BTU 507 NA 0.015 0.49 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| langanese 2 2 1 + $\mu$ 7 3 2 1 erctiry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| lickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thellium Tomaldehyde Tootnotes  1. Section 1.1 Biruminous and Subbiruminous Coal Combustion; Pulverized coal fired, dry bottom, wall fired 2. Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, uncontrolled 3. PM10 h.92% of PM (baghouse controlled emissions, AP-42 Table 1.1-5)  Which is in the controlled of the controlled emission emi |
| hallium ormaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                                                                                                | Pub                           |                       | Company of |                                        |                   | ation           |                      |
|----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-----------------|----------------------|
| Stack Identification (                                                                                         | Code:                         | S001                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Emission Unit Co                       | de:               | B002            |                      |
|                                                                                                                | Seasonal Fuel                 | Usage (%)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                     | rmal Operation of | Unit            | Space Heat (%)       |
| Dec-Feb                                                                                                        | Mar-May                       | Jun-Aug               | Sep-Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours/Day                              | Days/Week         | Hours/year      | .,                   |
| 31                                                                                                             | 33                            | 11                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                                     | 7                 | 8,760           | 0                    |
|                                                                                                                | BOILER SPECI                  | FICATIONS             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | STACK             | DATA (S001)     |                      |
| Furnace Type:<br>Manufacturer:                                                                                 | Top Fired<br>Babcock & Wilco: | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Height (ft)                            | <b>6</b> \        |                 | 300                  |
| Model & Serial #:                                                                                              | RB 295 NY-7716                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inside Diameter (I<br>Exhaust Flow Rat |                   |                 | 16                   |
| Jnit Description:                                                                                              | N/A                           | •                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Normal                                 | 789,395           | Max             | 937,595              |
| First Service or Last                                                                                          | Mod. Date:                    | May. 19, 1959         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Velocity (fps)                         | ·                 |                 | 65.5                 |
| Max Continuous Rat                                                                                             | ting (mmBTU/hr) :             | 1,392                 | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calculated or Stat                     |                   |                 | ST                   |
|                                                                                                                |                               |                       | Natural Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exhaust Tempera                        |                   | - n.a.          | 265                  |
|                                                                                                                | Maximum Hourly Fue<br>Type    | Unit Usage (units/hr) | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exhaust Moisture<br>Normal             | Content (if modif | ied) (%)<br>Max | 10                   |
|                                                                                                                | ous Coal                      | ton/hr                | 61.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Orientation of Re                      |                   | Max             | Up                   |
|                                                                                                                | al Gas                        | mcf/hr                | 1,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rainhat or Other                       |                   |                 | None                 |
|                                                                                                                |                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | ****              | Technology, %   |                      |
| Does the boiler/furns                                                                                          | ace have control tech         | nology (Y/N)          | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control                                | NOx               | PM              | SOx                  |
|                                                                                                                |                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Baghouse                               | 0                 | 99.9            | 0                    |
| Miscel                                                                                                         | laneous                       | Conde                 | ensers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adso                                   | orbers            | Catalytic/Th    | ermal Oxidation      |
| 2000-400                                                                                                       | NONE                          |                       | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | NONE              |                 | NONE                 |
| Cyclones/Sett                                                                                                  | ling Chambers                 | Electrostatic         | Precipitators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wet Collec                             | tion Systems      | Baghouses       | Fabric Filters       |
| 2000-404                                                                                                       | NONE                          | 2000-405              | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | NONE              |                 | C002                 |
|                                                                                                                |                               |                       | OPERATING F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARAMETERS                              |                   | <del></del>     |                      |
|                                                                                                                | 1994                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | I                 | Potential       |                      |
| Coal (ton) =                                                                                                   |                               |                       | 261,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coal (ton) =                           |                   |                 | 541,368              |
| Avg. Sulfur Content                                                                                            |                               |                       | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. Sulfur Conte                      |                   |                 | 1.00                 |
| Avg. Ash Content (%                                                                                            |                               |                       | 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. Ash Conten                        |                   |                 | 9.95                 |
| HHV Coal (BTU/lb)<br>Natural Gas (mcf) =                                                                       | ) ==                          |                       | 11,262<br>311,320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HHV Coal (BTU/<br>Natural Gas (mcf     |                   |                 | 11,262<br>10,862,400 |
| Avg. Sulfur Content                                                                                            | (%) =                         |                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Avg. Sulfur Cont                       |                   |                 | 10,802,400<br>N/A    |
| Avg. Ash Content (%                                                                                            |                               |                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Avg. Ash Conten                        | . ,               |                 | N/A                  |
| HHV Gas (BTU/scf)                                                                                              | ) =                           |                       | 1,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HHV Gas (BTU/s                         |                   |                 | 1,015                |
| Operation Hours =                                                                                              |                               |                       | 6,669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Operation Hours                        | =                 |                 | 8,760                |
|                                                                                                                |                               |                       | EMISSION CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALCULATIONS                            |                   |                 |                      |
|                                                                                                                | Source of                     | Units of              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | Actual            | PTE             | PTE                  |
| Pollutant                                                                                                      | Emission                      | Emission              | Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Factors                              | Emissions         | 100% Coal       | 100% Natural Gas     |
|                                                                                                                | Factor                        | Factor                | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Natural Gas                            | (ton/yr)          | (ton/yr)        | (ton/yτ)             |
| NOx                                                                                                            | AP-42(1)                      | lb/ton                | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /                                      | 2,921             | 5,874           |                      |
| CO                                                                                                             | AP-42(2)<br>AP-42(1)          | lb/mmCF<br>lb/ton     | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550                                    | 2835              | 135             | 2,987                |
| 50                                                                                                             | AP-42(1)<br>AP-42(2)          | lb/mmCF               | 0.30 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 /                                   | 16 1/2 /          | 1330            | 217                  |
| NMTOC                                                                                                          | AP-42(1)                      | lb/ton                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 8.1               | 16              | <del></del>          |
|                                                                                                                | AP-42(2)                      | lb/mmCF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7 🗸                                  | 18                |                 | 9.2                  |
| PM                                                                                                             | AP-42(1)                      | lb/ton                | 99.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 13 🗸              | 610             | 551                  |
| L 1AT                                                                                                          | AP-42(2)<br>AP-42(3)          | lb/mmCF<br>% PM       | 92.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 /                                    | 12                | 561             | 16'                  |
|                                                                                                                | AP-42(3)<br>AP-42(2)          | lb/mmCF               | 92.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 /                                    | 12 0              | 361             | 201/                 |
| PM<br>PM <sub>10</sub>                                                                                         |                               | lb/ton                | (13.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 1,784             | 6,707           | 6065                 |
| PM <sub>10</sub>                                                                                               | AP-42(1)                      |                       | 365-14.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                   | 1936              |                 | 3.3                  |
| PM <sub>10</sub>                                                                                               | AP-42(1)<br>AP-42(2)          | lb/mmCF               | י שחיווי כשע ו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   | 1               |                      |
| PM <sub>10</sub><br>SOx<br>Antimony                                                                            | 1 7                           | lb/mmCF               | 363-11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                   |                 |                      |
| PM <sub>10</sub> GOx Antimony Arsenic                                                                          | 1 7                           | lb/mmCF               | 203-11.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                   |                 |                      |
| PM <sub>10</sub><br>SOx<br>Antimony<br>Arsenic<br>Beryllium                                                    | 1 7                           | lb/mmCF               | 1000 CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                   |                 |                      |
| PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium                                                        | 1 7                           | lb/mmCF (             | 100 CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                   |                 |                      |
| PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Chromium                                               | 1 7                           | lb/mmCF               | 365 (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | /                 | 4               |                      |
|                                                                                                                | 1 7                           | lb/mmCF               | 365 11110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                     | 0.010             | 0.49            | NA NA                |
| PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Chromium                                               | AP-42(2)                      |                       | 305 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                     | 0.010             | 0.49            | NA                   |
| PM., SOx Antimony Arsenic Beryllium Connium Chromium Cobalt Lead Manganese Mercury                             | AP-42(2)                      |                       | 305 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA                                  | 0.010             |                 | NA                   |
| PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel          | AP-42(2)                      |                       | 305 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA                                  | 0.010             |                 | NA NA                |
| PM <sub>10</sub> SOX Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Wickel Selenium | AP-42(2)                      |                       | 305 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA                                  | 0.010             |                 | NA NA                |
| PM <sub>10</sub> SOX Antimony Arsenic Beryllium Cadmium Choronium Cobalt Lead danganese Mercury Nickel         | AP-42(2)                      |                       | 305 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                     | 0.010             |                 | NA NA                |

- Section 1.1 Bituminous and Subbituminous Coal Combustion; Pulverized coal fired, dry bottom, wall fired Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, uncontrolled PM10 is 92% of PM (baghouse controlled emissions, AP-42 Table 1.1-5)

| Unit 3                                               |
|------------------------------------------------------|
| Public Service Company of Colorado, Cherokee Station |
| Criteria and HAP Emissions                           |

| Stack Identification  | Code:                                          | S002               |                        | Emission Unit Co       | ode:               | B003             |                 |
|-----------------------|------------------------------------------------|--------------------|------------------------|------------------------|--------------------|------------------|-----------------|
|                       | Seasonal Fuel                                  | Usage (%)          |                        | N                      | ormal Operation of | f Unit           | Space Heat (%)  |
| Dec-Feb               | Mar-May                                        | Jun-Aug            | Sep-Nov                | Hours/Day              | Days/Week          | Hours/year       | · ` ` `         |
| 25                    | 27                                             | 29                 | 19                     | 24                     | 7                  | 8,760            | 0               |
|                       | BOILER SPECI                                   | FICATIONS          |                        |                        | STAC               | K DATA (\$002)   |                 |
| Furnace Type:         | Front Fired                                    |                    |                        | Height (ft)            |                    |                  | 300             |
| Manufacturer:         | Babcock & Wilco:                               | x                  |                        | Inside Diameter        | (ft)               |                  | 19.5            |
| Model & Serial #:     | RB 344 NY-77180                                | 02                 |                        | Exhaust Flow Ra        | te (acfm)          |                  |                 |
| Unit Description:     | Low NOx burner,                                | with overfire air  |                        | Normal                 | 495,419            | Max              | 745,517         |
| First Service or Last | First Service or Last Mod. Date: Apr. 28, 1962 |                    |                        | Velocity (fps)         |                    |                  | 27.7            |
| Max Continuous Ra     | ting (mmBTU/hr) :                              | 1,877              | Coal                   | Calculated or Sta      | ick Test (C/\$T)   |                  | ST              |
|                       |                                                | 1,697              | Natural Gas            | Exhaust Tempera        | ature (F)          |                  | 267             |
| ,                     | Maximum Hourly Fue                             | el Usage (units/hr | )                      | Exhaust Moistur        | e Content (if mod  | ified) (%)       |                 |
| Fuel                  | Туре                                           | Unit               | Rate                   | Normal                 | 6                  | Max              | 10              |
| Bitumin               | Bituminous Coal ton/hr 83.3                    |                    | Orientation of Release |                        |                    | Up               |                 |
| Natur                 | ral Gas                                        | mcf/hr             | 1,673                  | Rainhat or Other       | Obstruction        |                  | None            |
|                       |                                                | •                  |                        |                        | Contr              | ol Technology, % |                 |
| Does the boiler/furn  | ace have control tech                          | nology (Y/N)       | Y                      | Control                | NOx                | PM               | SOx             |
|                       |                                                |                    | Bag                    | house & Low NOx        | 53.5               | 99.9             | 0               |
| Miscel                | llaneous                                       | Con                | idensers               | Ads                    | sorbers            | Catalytic/Th     | ermal Oxidation |
| 2000-400              | C005                                           | 2000-401           | NONE                   | 2000-402               | NONE               | 2000-403         | NONE            |
| Cyclones/Sett         | tling Chambers                                 | Electrostati       | ic Precipitators       | Wet Colle              | ction Systems      | Baghouses        | Fabric Filters  |
| 2000-404              | NONE                                           | 2000-405           | NONE                   | 2000-406               | NONE               |                  | C003            |
|                       |                                                |                    | OPERATING              | PARAMETERS             |                    | ·                |                 |
|                       | 1994                                           |                    |                        |                        |                    | Potential        |                 |
| Coal (ton) =          |                                                | •••                | 425,597                | Coal (ton) =           |                    |                  | 729,708         |
| Avg. Sulfur Content   | t (%) =                                        |                    | 0.39                   | Avg. Sulfur Con        | tent (%) =         |                  | 1.00            |
| Avg. Ash Content (    | %) =                                           |                    | 9.95                   | Avg. Ash Content (%) = |                    |                  | 9.95            |
| HHV Coal (BTU/lb      | )=                                             |                    | 11,262                 | HHV Coal (BTU/lb) =    |                    |                  | 11,262          |
| Natural Gas (mcf) =   |                                                |                    | 479,215                | Natural Gas (mc        | f) =               |                  | 14,655,480 (    |
| Avg. Sulfur Content   | t (%) =                                        |                    | N/A                    | Avg. Sulfur Con        | tent (%) =         |                  | N/A             |
| Avg. Ash Content (    | %) =                                           |                    | N/A                    | Avg. Ash Conte         | nt (%) =           |                  | N/A             |
| HHV Gas (BTU/scf      | ) =                                            |                    | 1,015                  | HHV Gas (BTU           | /scf) =            |                  | 1,015           |
| Operation Hours =     |                                                |                    | 7,576                  | Operation Hours        | =                  |                  | 8,760           |

#### EMISSION CALCULATIONS

|                  | Source of | Units of     |            |             | Actual    | PTE        | PTE              |
|------------------|-----------|--------------|------------|-------------|-----------|------------|------------------|
| Pollutant        | Emission  | Emission     | Emission   | Factors     | Emissions | 100% Coal  | 100% Natural Gas |
|                  | Factor    | Factor       | Coal       | Natural Gas | (ton/yr)  | (ton/yr) / | (ton/yr)         |
| NOx              | AP-42(1)  | lb/ton       | 21.7       |             | 2,279     | 4,931      | 4460             |
|                  | AP-42(2)  | lb/mmCF      |            | 550         | 2147      | /          | 4,030            |
| СО               | AP-42(1)  | lb/ton       | 0.50       |             | 116       | 182        |                  |
|                  | AP-42(2)  | lb/mmCF      |            | 40          | 100       |            | 293              |
| NMTOC            | AP-42(1)  | lb/ton       | 0.06       |             | 13 🗸      | 22         |                  |
|                  | AP-42(2)  | lb/mmCF      |            | 1.7         |           |            | 12               |
| PM               | AP-42(1)  | lb/ton       | 99.50      | /           | 21        | 822        | 743              |
|                  | AP-42(2)  | lb/mmCF      | 401        | 3 /         |           |            | 22               |
| PM <sub>10</sub> | AP-42(3)  | % PM         | 92.00      |             | 19        | 756        | 743              |
|                  | AP-42(2)  | lb/mmCF      |            | 3 -         |           |            | 22               |
| SOx              | AP-42(1)  | lb/ton       | (13.65)    |             | 2,905     | 9,040      | 8176             |
|                  | AP-42(2)  | lb/mmCF      | 1385-14.89 | 0.60        | 3168      |            | 4.4              |
| Antimony         |           |              | 7          |             |           |            |                  |
| Arsenic          |           | T            | ł          |             |           |            |                  |
| Beryllium        | T         | [            | 1000       |             |           |            |                  |
| Cadmium          |           |              | 1000 CNO   |             |           |            |                  |
| Chromium         |           |              | 100 -50    |             |           |            |                  |
| Cobait           | 1         |              | 19 TO      |             |           |            | ·                |
| Lead             | AP-42     | 1b/10^12 BTU | 507        | NA          | 0.017     | 0.66       | NA               |
| Manganese        |           | [            |            |             |           | 4.2        |                  |
| Mercury          |           |              |            |             |           | ,          |                  |
| Nickel           |           |              |            |             |           |            |                  |
| Selenium         |           |              |            |             |           |            |                  |
| Thallium         |           |              |            |             |           |            |                  |
| Formaldehyde     |           |              |            | -           |           |            |                  |
| POM              |           |              |            |             |           |            |                  |

Section 1.1 Bituminous and Subbituminous Coal Combustion; Pulverized coal fired, dry bottom, wall fired Section 1.4 Natural Gas Combustion; Utility/large industrial boilers, uncontrolled PM10 is 92% of PM (baghouse controlled emissions, AP-42 Table 1.1-5)

burner.

Soortinger.

TitleI

|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         | CI                                                                                                                       | riteria and H                                                                                                     | THE LINES IV                                                                             | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | l                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|
| tack Identification                                                                                                                                                                   | Code:                                                                                                                                                                                                                                                                                   | S003                                                                                                                     |                                                                                                                   | Emission Unit Co                                                                         | de:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B004                                                                    |                                                                            |
| Dec-Feb                                                                                                                                                                               | Seasonal Fuel<br>Mar-May                                                                                                                                                                                                                                                                | Usage (%)<br>Jun-Aug                                                                                                     | Sep-Nov                                                                                                           | No<br>Hours/Day                                                                          | rmal Operation of U<br>Days/Week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit<br>Hours/year                                                      | Space Heat (%)                                                             |
| 25                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                      | 27                                                                                                                       | 24                                                                                                                | 24                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,760                                                                   | 0                                                                          |
|                                                                                                                                                                                       | BOILER SPECI                                                                                                                                                                                                                                                                            | ICATIONS                                                                                                                 |                                                                                                                   |                                                                                          | STACK I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATA (\$003)                                                            |                                                                            |
| imace Type:<br>lanufacturer:                                                                                                                                                          | Corner tilting tange<br>Combustion Engin                                                                                                                                                                                                                                                | _                                                                                                                        |                                                                                                                   | Height (ft)<br>Inside Diameter (                                                         | <b>&amp;</b> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         | 400<br>22                                                                  |
| Iodel & Serial #:                                                                                                                                                                     | 12465 C400016                                                                                                                                                                                                                                                                           | ecting                                                                                                                   |                                                                                                                   | Exhaust Flow Ra                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 22                                                                         |
| nit Description:                                                                                                                                                                      | Low NOx burner,                                                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                                   | Normal                                                                                   | 1,041,916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max                                                                     | 1,389,927                                                                  |
| irst Service or Last<br>Iax Continuous Ra                                                                                                                                             | t Mod. Date:<br>iting (mmBTU/hr) :                                                                                                                                                                                                                                                      | Nov. 20, 1968<br>3,520                                                                                                   | Coal                                                                                                              | Velocity (fps)<br>Calculated or Sta                                                      | ck Test (C/ST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         | 45.7<br>C                                                                  |
|                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                      | 11.00                                                                                                                    | Natural Gas                                                                                                       | Exhaust Tempera                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 267                                                                        |
|                                                                                                                                                                                       | Maximum Hourly Fue<br>Type                                                                                                                                                                                                                                                              | Usage (units/hr)                                                                                                         | Rate                                                                                                              | Exhaust Moisture Normal                                                                  | Content (if modifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed) (%)<br>Max                                                          | 10                                                                         |
| Bitumir                                                                                                                                                                               | nous Coal                                                                                                                                                                                                                                                                               | ton/hr                                                                                                                   | 156.3 V                                                                                                           | Orientation of Re                                                                        | lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | Up                                                                         |
| Natu                                                                                                                                                                                  | ral Gas                                                                                                                                                                                                                                                                                 | mcf/hr                                                                                                                   | 1749                                                                                                              | Rainhat or Other                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | None                                                                       |
| Tope the bailou/f                                                                                                                                                                     | ace have control techi                                                                                                                                                                                                                                                                  | nology (VAI)                                                                                                             | x 134                                                                                                             | 16g Control                                                                              | Control NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Technology, %<br>PM                                                     | SOx                                                                        |
| ocs uie ooner/ium                                                                                                                                                                     | sace mave control techi                                                                                                                                                                                                                                                                 | iiology (1/N)                                                                                                            |                                                                                                                   | Control , Low NOx, & DSI                                                                 | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | РМ<br>99.9                                                              | 37.5                                                                       |
| Misce                                                                                                                                                                                 | llaneous                                                                                                                                                                                                                                                                                | Conde                                                                                                                    |                                                                                                                   |                                                                                          | orbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Catalytic/Th                                                            | ermal Oxidation                                                            |
| 000-400                                                                                                                                                                               | C006, C007                                                                                                                                                                                                                                                                              | 2000-401                                                                                                                 | NONE                                                                                                              | 2000-402                                                                                 | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000-403                                                                | NONE                                                                       |
|                                                                                                                                                                                       | tling Chambers                                                                                                                                                                                                                                                                          | Electrostatic                                                                                                            |                                                                                                                   |                                                                                          | tion Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         | Fabric Filters                                                             |
| 1000-404                                                                                                                                                                              | NONE                                                                                                                                                                                                                                                                                    | 2000-405                                                                                                                 | NONE                                                                                                              | 2000-406                                                                                 | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000-407                                                                | C004                                                                       |
|                                                                                                                                                                                       | 1994                                                                                                                                                                                                                                                                                    |                                                                                                                          | OPERATING                                                                                                         | PARAMETERS                                                                               | Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | otentiai                                                                |                                                                            |
| oal (ton) =                                                                                                                                                                           |                                                                                                                                                                                                                                                                                         |                                                                                                                          | 981,255                                                                                                           | Coal (ton) =                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 1,369,188                                                                  |
| Avg. Sulfur Conten                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                          | 0.39                                                                                                              | Avg. Sulfur Cont                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 1.00                                                                       |
| Avg. Ash Content ('<br>HV Coal (BTU/Ib                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                                                                                                          | 9.95<br>11,262                                                                                                    | Avg. Ash Conten<br>HHV Coal (BTU                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | 9.95<br>11,262                                                             |
| Vatural Gas (mcf) =                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |                                                                                                                          | 333,192                                                                                                           | Natural Gas (mcf                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | 15,321,240                                                                 |
| Avg. Sulfur Conten                                                                                                                                                                    | t (%) =                                                                                                                                                                                                                                                                                 |                                                                                                                          | N/A                                                                                                               | Avg. Sulfur Cont                                                                         | ent (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | N/A                                                                        |
| •                                                                                                                                                                                     | , ,                                                                                                                                                                                                                                                                                     |                                                                                                                          | ***                                                                                                               |                                                                                          | . (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                                                            |
| Avg. Ash Content (                                                                                                                                                                    | %) =                                                                                                                                                                                                                                                                                    |                                                                                                                          | N/A<br>1,015                                                                                                      | Avg. Ash Conter<br>HHV Gas (BTU/                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         | N/A<br>1,015                                                               |
| Avg. Ash Content ('<br>HHV Gas (BTU/scf                                                                                                                                               | %) =                                                                                                                                                                                                                                                                                    |                                                                                                                          | N/A<br>1,015<br>8,102                                                                                             | Avg. Ash Conten<br>HHV Gas (BTU/<br>Operation Hours                                      | scf) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         | N/A<br>1,015<br>8,760                                                      |
| •                                                                                                                                                                                     | %) =                                                                                                                                                                                                                                                                                    |                                                                                                                          | 1,015<br>8,102                                                                                                    | HHV Gas (BTU/                                                                            | scf) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         | 1,015                                                                      |
| Avg. Ash Content ('<br>HHV Gas (BTU/scf                                                                                                                                               | %) =                                                                                                                                                                                                                                                                                    | Units of                                                                                                                 | 1,015<br>8,102                                                                                                    | HHV Gas (BTU/<br>Operation Hours                                                         | scf) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PTE                                                                     | 1,015                                                                      |
| Avg. Ash Content ('<br>HHV Gas (BTU/scf                                                                                                                                               | %) = f) = Source of Emission                                                                                                                                                                                                                                                            | Emission                                                                                                                 | 1,015<br>8,102<br>EMISSION C                                                                                      | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS<br>In Factors                            | scf) =<br>=<br>Actual<br>Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100% Coal                                                               | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas                                   |
| Avg. Ash Content (* HHV Gas (BTU/scf Operation Hours = Pollutant                                                                                                                      | %) = f) = Source of Emission Factor                                                                                                                                                                                                                                                     | Emission<br>Factor                                                                                                       | EMISSION C  Emission C  Coal                                                                                      | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS                                          | Actual Emissions (ton/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal<br>(ton/yr)                                                   | 1,015<br>8,760<br>PTE                                                      |
| Avg. Ash Content (* HHV Gas (BTU/scf Operation Hours =  Pollutant                                                                                                                     | %) = f) =    Source of Emission Factor   AP-42(1)   AP-42(2)                                                                                                                                                                                                                            | Emission<br>Factor<br>lb/ton<br>lb/mmCF                                                                                  | EMISSION C.  Emissio Coal 14.4                                                                                    | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS<br>In Factors                            | Actual Emissions (ton/yr) 2-776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100% Coal<br>(ton/yr)<br>6,939                                          | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas                                   |
| Avg. Ash Content ('<br>HHV Gas (BTU/scf<br>Operation Hours =                                                                                                                          | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1)                                                                                                                                                                                                                         | Emission Factor lb/ton lb/mmCF lb/ton                                                                                    | EMISSION C  Emission C  Coal                                                                                      | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS<br>In Factors<br>Natural Gas             | Actual Emissions (10n/yr) 2-776 2-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100% Coal<br>(ton/yr)                                                   | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yr)<br>6,969              |
| Avg. Ash Content (* HHV Gas (BTU/scf Operation Hours =  Pollutant                                                                                                                     | %) = f) =    Source of Emission Factor   AP-42(1)   AP-42(2)                                                                                                                                                                                                                            | Emission<br>Factor<br>lb/ton<br>lb/mmCF                                                                                  | EMISSION C.  Emissio Coal 14.4                                                                                    | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS<br>In Factors<br>Natural Gas<br>550      | Actual Emissions (ton/yr) 2-776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100% Coal<br>(ton/yr)<br>6,939                                          | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yτ)                       |
| Avg. Ash Content (* HHV Gas (BTU/scf )  Operation Hours =   Pollutant  NOx  CO                                                                                                        | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(2) AP-42(2) AP-42(1) AP-42(2)                                                                                                                                                                                              | Emission Factor  lb/ton lb/mmCF  lb/ton lb/mmCF  lb/ton lb/mmCF                                                          | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50                                                             | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS<br>In Factors<br>Natural Gas             | Actual Emissions (tonlyn) 2 252 252 254 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100% Coal<br>(ton/yr)<br>6,939                                          | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yr)<br>6,969              |
| Avg. Ash Content (* HHV Gas (BTU/scf )  Operation Hours =   Pollutant  NOx  CO                                                                                                        | %) = (f) = Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(1) AP-42(1)                                                                                                                                                                   | Emission Factor Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton                                                      | 1,015<br>8,102<br>EMISSION C.<br>Emission<br>Coal<br>14.4<br>0.50<br>0.06                                         | HHV Gas (BTU/<br>Operation Hours<br>ALCULATIONS<br>In Factors<br>Natural Gas<br>550      | Actual Emissions (ton/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal<br>(ton/yr)<br>6,939                                          | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yr)<br>6,969              |
| Avg. Ash Content (* HHV Gas (BTU/scf Operation Hours =  Pollutant NOx  CO  NMTOC                                                                                                      | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3)                                                                                                                                                                   | Emission Factor Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF                | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50                                                             | HHV Gas (BTU/<br>Operation Hours  ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  | Actual Emissions (tonlyn) 2 252 252 254 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100% Coal<br>(ton/yr)<br>6,939                                          | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yr)<br>6,969<br>478<br>34 |
| Avg. Ash Content (* HHV Gas (BTU/scf ) Operation Hours =  Pollutant NOX O O MTOC                                                                                                      | %) =<br>Source of<br>Emission<br>Factor<br>AP-42(1)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(1)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)                                                                                                             | Emission Factor Ib/ton Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/mmCF Ib/mmCF % PM Ib/mmCF          | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>99.50 V<br>10 Å                                  | HHV Gas (BTU/Operation Hours ALCULATIONS  n Factors Natural Gas 550 40 1.7               | Actual   Emissions   400/yr)   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776   2-776 | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542                    | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yt)<br>6,969<br>478       |
| Avg. Ash Content (* HHV Gas (BTU/scf Operation Hours =  Pollutant NOx  CO  NMTOC                                                                                                      | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3)                                                                                                                                                                   | Emission Factor Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF Ib/ton Ib/mmCF                | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>99.50 V<br>10 Å<br>92.00                         | HHV Gas (BTU/<br>Operation Hours  ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  | Actual Emissions (ton/yr) 2/2 2776 252 244 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41                             | 1,015<br>8,760<br>PTE<br>50% Coal/50%Gas<br>(ton/yr)<br>6,969<br>478<br>34 |
| Avg. Ash Content (* HTV Gas (BTU/sef )  Pollutant  NOx  CO  NMTOC  PM  PM  PM  Antimony                                                                                               | %) = (f) = Source of Emission Factor AP-42(1) AP-42(2) AP-42(2) AP-42(1) AP-42(2) AP-42(2) AP-42(2) AP-42(2) AP-42(3) AP-42(3) AP-42(3) AP-42(3) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(2) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>99.50 V<br>10 M<br>92.00 V                       | HHV Gas (BTU/Operation Hours ALCULATIONS  To Factors  Natural Gas  550  40  1.7  3       | Actual Emissions (100/yr) 2/0 2,776 252 252 245 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542                    | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732          |
| Avg. Ash Content (* HHV Gas (BTU/scf ) Operation Hours =  Pollutant  NOX  O  NMTOC  PM  PM  O  Antimony  Arsenic                                                                      | %) = (f) = Source of Emission Factor AP-42(1) AP-42(2) AP-42(2) AP-42(1) AP-42(2) AP-42(2) AP-42(2) AP-42(2) AP-42(3) AP-42(3) AP-42(3) AP-42(3) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(2) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>0.06<br>10]A<br>92.00<br>10]A<br>92.00           | HHV Gas (BTU/Operation Hours ALCULATIONS  To Factors  Natural Gas  550  40  1.7  3       | Actual Emissions (100/yr) 2/0 2,776 252 252 245 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542                    | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732          |
| Avg. Ash Content (* HTV Gas (BTU/sef )  Pollutant  NOx  CO  NMTOC  PM  PM  PM  Antimony                                                                                               | %) = (f) = Source of Emission Factor AP-42(1) AP-42(2) AP-42(2) AP-42(1) AP-42(2) AP-42(2) AP-42(2) AP-42(2) AP-42(3) AP-42(3) AP-42(3) AP-42(3) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(2) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>99.50 V<br>10 M<br>92.00 V                       | HHV Gas (BTU/Operation Hours ALCULATIONS  To Factors  Natural Gas  550  40  1.7  3       | Actual Emissions (100/yr) 2/0 2,776 252 252 245 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542                    | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732          |
| Nog. Ash Content (* HIV Gas (BTU/scf ) Pollutant NOX  NMTOC  Mu  Mu  Mu  Mu  Mu  Mu  Mu  Mu  Mu  M                                                                                    | %) = (f) = Source of Emission Factor AP-42(1) AP-42(2) AP-42(2) AP-42(1) AP-42(2) AP-42(2) AP-42(2) AP-42(2) AP-42(3) AP-42(3) AP-42(3) AP-42(3) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(2) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>0.06<br>10]A<br>92.00<br>10]A<br>92.00           | HHV Gas (BTU/Operation Hours ALCULATIONS  To Factors  Natural Gas  550  40  1.7  3       | Actual Emissions (100/yr) 2/0 2,776 252 252 245 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542                    | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732          |
| Avg. Ash Content (* HIV Gas (BTU/set*) HIV Gas (BTU/set*) Pollutant HOX  TO  MITOC  M  Min  GOX  Antimony Avsenic Beryllium Cadmium Cobalt                                            | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3) AP-42(2) AP-42(3) AP-42(2) AP-42(4)                                                                                                                               | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>114.4<br>0.50<br>0.06<br>99.50 V<br>10 A<br>92.00<br>32.65<br>35.5 14.87 | HHV Gas (BTU/Operation Hours ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  0.60 | Actual Emissions    Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542<br>1,419           | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732 8,485    |
| Nog. Ash Content (* HIV Gas (BTU/sef) Departion Hours =  Pollutant NOx  CO  NMTOC  PM  PM  PM  Antimony  Arstenic  Cadmium  Chromium  Chodult  Cadmium  Chromium  Chodult  Cead  Cead | %) = (f) = Source of Emission Factor AP-42(1) AP-42(2) AP-42(2) AP-42(1) AP-42(2) AP-42(2) AP-42(2) AP-42(2) AP-42(3) AP-42(3) AP-42(3) AP-42(3) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(2) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(1) | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>14.4<br>0.50<br>0.06<br>99.50<br>10A<br>92.00<br>32.65<br>32.5 14.89     | HHV Gas (BTU/Operation Hours ALCULATIONS  To Factors  Natural Gas  550  40  1.7  3       | Actual Emissions (100/yr) 2/0 2,776 252 252 245 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542<br>1,419<br>16,962 | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732          |
| AND AND CONTENT (**  WHY Gas (BTU/scf )  Pollutant  NOX  O  MITOC  M  M  M  M  M  M  M  M  M  M  M  M  M                                                                              | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3) AP-42(2) AP-42(3) AP-42(2) AP-42(4)                                                                                                                               | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>114.4<br>0.50<br>0.06<br>99.50 V<br>10 A<br>92.00<br>32.65<br>35.5 14.87 | HHV Gas (BTU/Operation Hours ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  0.60 | Actual Emissions    Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal<br>(ton/yr)<br>6,939<br>342<br>41<br>1,542<br>1,419           | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732 8,485    |
| AND AND CONTENT (**  WHY GAS (BTU/set*)  Pollutant  NOX  CO  NMTOC  OM  Mino  OX  Antimony  Arsenic  Seryllium  Cadmium  Thromium  Cobalt  Lead  Aanganese  decreury  Sickel          | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3) AP-42(2) AP-42(3) AP-42(2) AP-42(4)                                                                                                                               | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>114.4<br>0.50<br>0.06<br>99.50 V<br>10 A<br>92.00<br>32.65<br>35.5 14.87 | HHV Gas (BTU/Operation Hours ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  0.60 | Actual Emissions    Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal (ton/yr) 6,939 342 41 1,542 1,419 16,962                      | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732 8,485    |
| AND AND CONTENT (**  WAS (BTU/sef)  Pollutant  NOX  O  NMTOC  M  O  NMTOC  M  O  Antimony  Arsenic  Beryllium  Cobalt  Cobalt  Lead  Manganese  dercury  Wickel  Gelenium             | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3) AP-42(2) AP-42(3) AP-42(2) AP-42(4)                                                                                                                               | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>114.4<br>0.50<br>0.06<br>99.50 V<br>10 A<br>92.00<br>32.65<br>35.14.87   | HHV Gas (BTU/Operation Hours ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  0.60 | Actual Emissions    Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal (ton/yr) 6,939 342 41 1,542 1,419 16,962                      | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732 8,485    |
| AND AND CONTENT (**  WHY GAS (BTU/set*)  Pollutant  NOX  CO  NMTOC  OM  Mino  OX  Antimony  Arsenic  Seryllium  Cadmium  Thromium  Cobalt  Lead  Aanganese  decreury  Sickel          | %) = f) =  Source of Emission Factor AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(1) AP-42(2) AP-42(3) AP-42(2) AP-42(3) AP-42(2) AP-42(4)                                                                                                                               | Emission Factor Ib/ton Ib/mmCF | 1,015<br>8,102<br>EMISSION C.<br>Coal<br>114.4<br>0.50<br>0.06<br>99.50 V<br>10 A<br>92.00<br>32.65<br>35.14.87   | HHV Gas (BTU/Operation Hours ALCULATIONS  In Factors  Natural Gas  550  40  1.7  3  0.60 | Actual Emissions    Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Coal (ton/yr) 6,939 342 41 1,542 1,419 16,962                      | 1,015<br>8,760  PTE 50% Coal/50%Gas (ton/yr) 6,969 478 34 794 732 8,485    |

las mines certies

Public Service Company-Valmont Station

**TABLE 3-1**Valmont Combustion Turbine Project Emissions Summary <sup>a</sup>

| S<br>Pollutant                  | Significant Emission<br>Rates (tpy) | Annual<br>Emissions<br>(tpy), Total of<br>Both Turbines<br>plus Unit #8 Air<br>Preheater <sup>b</sup> | Maximum Hourly<br>Emissions<br>(lb/hr), Each of<br>Two Turbines <sup>c</sup> | Maximum Hourly<br>Emissions<br>(Ib/hr), Unit #8<br>Air Preheater |
|---------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|
| Carbon Monoxide                 | 100                                 | 90.8                                                                                                  | 220                                                                          | 0.24                                                             |
| Nitrogen Oxides                 | 40                                  | 39.1                                                                                                  | 31                                                                           | 0.24                                                             |
| Sulfur Dioxide d                | 40                                  | 0.3                                                                                                   | 0.2                                                                          | 0.01                                                             |
| Particulate Matter <sup>e</sup> | 25                                  | 4.0                                                                                                   | 3                                                                            | 0.04                                                             |
| Fine Particulate Matter PM      | <sub>10</sub> e 15                  | 4.0                                                                                                   | 3                                                                            | 0.04                                                             |
| Ozone                           | 40 (voc)                            | 1.5                                                                                                   | 5.1                                                                          | 0.04                                                             |
| Lead                            | 0.6                                 | Not Emitted                                                                                           | Not Emitted                                                                  | Not Emitted                                                      |
| Fluorides                       | 3                                   | Not Emitted                                                                                           | Not Emitted                                                                  | Not Emitted                                                      |
| Sulfuric Acid Mist              | 7                                   | Not Emitted                                                                                           | Not Emitted                                                                  | Not Emitted                                                      |
| Total Reduced Sulfur            | 10                                  | Not Emitted                                                                                           | Not Emitted                                                                  | Not Emitted                                                      |
| Reduced Sulfur<br>Compounds     | 10                                  | Not Emitted                                                                                           | Not Emitted                                                                  | Not Emitted                                                      |
| Formaldehyde                    | Not Applicable                      | 0.3                                                                                                   | 0.2                                                                          | 0.0005                                                           |
| Total HAPs                      | Not Applicable                      | 0.6                                                                                                   | 0.4                                                                          | 0.01                                                             |

<sup>&</sup>lt;sup>a</sup>Detailed emission calculations are provided in Appendix A.

Notes:

tpy = tons per year

lb/hr = pounds per hour

DEN/EK15/003672996.DOC 3-5

<sup>&</sup>lt;sup>b</sup>Annual emissions are based on total heat inputs for the Unit #7 turbine of 442,000 MMBtu per year, for the Unit #8 turbine of 442,000 MMBtu/year, and the Unit #8 air preheater of 6,700 MMBtu/year.

<sup>&</sup>lt;sup>c</sup>Hourly emissions are based on operating conditions that result in maximum emissions for each pollutant. For sulfur dioxide, particulate matter, and fine particulate matter, these conditions are: operation at full load across all ambient temperatures. For carbon monoxide, oxides of nitrogen, and volatile organic compounds, maximum emitting conditions are: 100 percent load at 25 degrees Fahrenheit.

<sup>&</sup>lt;sup>d</sup>The SO₂ emissions were estimated from the EPA default emissions rate of 0.0006 pounds SO₂ per MMBtu, for combustion turbine burning pipeline quality natural gas as obtained from 40 CFR 75, Appendix D, 2.3.2.

<sup>&</sup>lt;sup>e</sup>The PM and PM<sub>10</sub> emissions are the sum of solid and condensable fractions.

## **Public Service Company-Zuni Station**

#### Unit 1A Public Service Company of Colorado, Zuni Station Criteria and HAP Emissions

| Stack Identification                  |                          | S001             |               | Unit Code:                                       | B001              |               |                   |
|---------------------------------------|--------------------------|------------------|---------------|--------------------------------------------------|-------------------|---------------|-------------------|
|                                       | Seasonal Fuel            | Usage (%)        |               | No.                                              | ormal Operation o | f Unit        | Space Heat (%)    |
| Dec-Feb                               | Mar-May                  | Jun-Aug          | Sep-Nov       | Hours/Day                                        | Days/Week         | Hours/year    | . ,               |
| 41                                    | 16                       | 20               | 23            | 24                                               | 7                 | 8760          | 0                 |
|                                       | BOILER SPECIE            | FICATIONS        |               |                                                  | TZ                | ACK DATA      |                   |
| Furnace Type:                         | Front-fired              |                  |               | Height (ft)                                      | 31.               | CK DATA       | 280               |
| Manufacturer:                         | Babcock & Wilcox         |                  |               | Inside Diameter (                                | A)                |               | 13                |
| Model & Serial #:                     | 15253                    |                  |               | Exhaust Flow Ra                                  |                   |               | .,                |
| Unit Description:                     | N/A                      |                  |               | Normal                                           | 120.000           | Max           | 240,000           |
| First Service or Las                  | t Mod. Date:             | 1948             |               | Exhaust Velocity                                 |                   |               | 15.08             |
| Max Continuous Ra                     | ating (MMBTU/hr):        | 450              | Natural Gas   | Calculated or Sta                                |                   |               | ST                |
|                                       |                          | 450              | #6 Fuel Oil   | Exhaust Tempera                                  |                   |               | 500               |
|                                       | Maximum Hourly Fue       | Usage (units/hr) |               |                                                  | Content (if modi  | fied) (%)     | 200               |
| Fu                                    | el Type                  | Unit             | Rate          | Normal                                           | 10                | Max           | 16                |
| Nat                                   | ural Gas                 | Mcf/hr           | 450           | Orientation of Re                                | lease             |               | Up                |
| #6                                    | Fuel Oil                 | gal/hr           | 3,061         | Rainhat or Other                                 | Obstruction       |               | None              |
|                                       |                          | <u> </u>         |               |                                                  |                   | T. 1 1 0/     | rione             |
| Doer the bailer/firm                  | nace have control techno | .l (VAI)         | N             |                                                  |                   | Technology, % |                   |
| Does the boller/full                  | ace have control techno  | nogy (1/N)       | N             | Control                                          | NOx               | PM            | SOx               |
|                                       |                          |                  |               | None                                             | 0                 | 0             | 0                 |
| Misc                                  | ellaneous                | Conc             | iensers       | Ade                                              | orbers            | Catalusia/Th  | ermal Oxidation   |
| 2000-400                              | NONE                     | 2000-401         | NONE          | 2000-402                                         | NONE              |               | NONE              |
|                                       |                          |                  |               |                                                  |                   | 2000-403      | HOILE             |
| Cyclones/Se                           | ettling Chambers         | Electrostation   | Precipitators | Wet Collec                                       | tion Systems      | Baghouses     | Fabric Filters    |
| 2000-404                              | NONE                     | 2000-405         | NONE          |                                                  | NONE              | 2000-407      | NONE              |
| ·····                                 |                          |                  | OPERATING P   | ADAMÉTERO                                        |                   |               |                   |
|                                       | 1994                     |                  | OPERATING     | ARAMETERS                                        |                   | Potential     |                   |
| <del></del>                           |                          |                  |               | <del>                                     </del> |                   | Potential     |                   |
| Natural Gas (Mcf)                     |                          |                  | 508,496       | Natural Gas (Mcf                                 | *                 |               | 3,942,00          |
| Max Sulfur Content                    |                          |                  | 0.01          | Max Sulfur Conte                                 |                   |               | 0.01              |
| Max Ash Content (                     |                          |                  | 0.00          | Max Ash Content                                  |                   |               | 0.00              |
| HHV Gas (BTU/cf)                      | ) ≠                      |                  | 1,000         | HHV Gas (BTU/                                    | ,                 |               | 1,000             |
| #6 Fuel Oil (gal) =                   |                          |                  | 2,650         | #6 Fuel Oil (gal)                                |                   |               | 26,816,32         |
| Max Sulfur Content                    |                          |                  | 0.79          | Max Sulfur Conto                                 |                   |               | 0.7               |
| Max Ash Content (                     |                          |                  | 0.1           | Max Ash Content                                  |                   |               | 0.                |
| HHV Fuel Oil (MB<br>Operation Hours = | I ∪/gai) =               |                  | 147           | HHV Fuel Oil (M                                  |                   |               | 14                |
| Operation Hours =                     |                          |                  | 3,459         | Operation Hours                                  | =                 |               | 8,76              |
|                                       |                          |                  | EMISSION CA   | LCULATIONS                                       |                   |               |                   |
|                                       | Source of                | Units of         | T             |                                                  |                   |               |                   |
| Pollutant                             | Emission                 | Emission         | E             | n Factors                                        | Actual            | PTE           | PTE               |
| Tumunt                                | Factor                   | Factor           |               |                                                  | Emissions         |               | 100 % #6 Fuel Oil |
| NOx                                   | AP-42(1)                 | lb/MMCF          | Natural Gas   | #6 Fuel Oil                                      | (ton/yr)          | (ton/yr)      | (ton/yr)          |
|                                       | AP-42(4)                 | lb/10^3 gal      | 330           |                                                  | 140               | 1,084         |                   |
| CO                                    | AP-42(1)                 | Ib/MMCF          | 40            | 67                                               | 10.2              | 79            | 898               |
|                                       | AP-42(4)                 | 1b/10^3 gal      | 1 ~           | 5                                                | 10.2              | 19            |                   |
| NMTOC                                 | AP-42(3)                 | lb/MMCF          | 1.7           |                                                  | 0.43              | 3,4           | 67                |
|                                       | AP-42(5)                 | 1b/10^3 gal      | 1             | 0.76                                             | 0.43              | 3.4           | 10                |
| PM                                    | AP-42(2)                 | lb/MMCF          | 3.0           | 3.76                                             | 0.78              | 5.9           | 10                |
|                                       | AP-42(4)                 | lb/10^3 gal      | 3.5           | 10 48                                            | 0.78              | 3.9           | 1                 |
| PM <sub>10</sub>                      | AP-42(2)                 | lb/MMCF          | 3.0           | 10.46                                            | 0.55              | 5.9           | 141               |
|                                       | AP-42(6)                 | % PM             | 1             | 71                                               | 0.33              | 3.9           | 100               |
| SOx                                   | AP-42(1)                 | Ib/MMCF          | 0.6           | , · · ·                                          | 0.32              | 1.2           | 100               |
|                                       | 1                        |                  | 1 0.0         | l l                                              | 0.32              | 1.2           | I                 |

129

111

ÑA

0.0000

NA

1,577

0.22

# Manganese Mercury Nickel Selenium Thallium Formaldehyde POM Footnotes

Antimony
Arsenic
Beryllium
Cadmium
Chromium
Cobalt
Lead
Manganese

\*\*\*

AP-42(4)

AP-42

- Section 1.4, Natural Gas Combustion; Table 1.4-2.
  Section 1.4, Natural Gas Combustion; Table 1.4-1.
  Section 1.4, Natural Gas Combustion; Table 1.4-3.
  Section 1.3 Fuel Oil Combustion; Table 1.3-2.
  Section 1.3 Fuel Oil Comb

lb/10^3 gal

lb/10^12 BTU

# Public Service Company of Colorado, Zuni Station Criteria and HAP Emissions

| Stack Identification C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ode :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S002                                                                                                                                     |                                                                              | Unit Code: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Seasonal Fue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Usage (%)                                                                                                                                |                                                                              | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rmal Operation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                                                    | Space Heat (%)                                                        |
| Dec-Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Маг-Мау                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun-Aug                                                                                                                                  | Sep-Nov                                                                      | Hours/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Days/Week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours/year                                              | •                                                                     |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                       | 23                                                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8760                                                    | 0                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BOILER SPECI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FICATIONS                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACK DATA                                                |                                                                       |
| Furnace Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Front fired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HEATHORS                                                                                                                                 |                                                                              | Height (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CKDAIA                                                  | 107                                                                   |
| Manufacturer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Babcock & Wilcox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                              | Inside Diameter (fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | 6                                                                     |
| Model & Serial #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          |                                                                              | Exhaust Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | •                                                                     |
| Unit Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |                                                                              | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max                                                     | 204,000                                                               |
| First Service or Last !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1948                                                                                                                                     |                                                                              | Exhaust Velocity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 70.77                                                                 |
| Max Continuous Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                      | Natural Gas                                                                  | Calculated or Stac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | ST                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                      | #6 Fuel Oil                                                                  | Exhaust Temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 500                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maximum Hourly Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                              | Exhaust Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ied) (%)                                                |                                                                       |
| Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                                                                                                                                     | Rate                                                                         | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max                                                     | 16                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mcf/hr                                                                                                                                   | 200                                                                          | Orientation of Rel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | Up                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | el Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal/hr                                                                                                                                   | 1,361                                                                        | Rainhat or Other (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | None                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Technology, %                                           |                                                                       |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1 (VAD                                                                                                                                  | N                                                                            | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 60                                                                    |
| Does the boiler/furna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ce nave control techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ology (1/N)                                                                                                                              | N                                                                            | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM                                                      | SOx                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                                              | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                       | 0                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | laneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conde                                                                                                                                    | nsers                                                                        | Adso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Catalytic/The                                           | rmal Oxidation                                                        |
| 2000-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000-401                                                                                                                                 | NONE                                                                         | 2000-402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000-403                                                | NONE                                                                  |
| Cyclones/Sett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ling Chambers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Electrostatic                                                                                                                            | Precipitators                                                                | Wet Collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Raghouses                                               | Fabric Filters                                                        |
| 2000-404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000-405                                                                                                                                 | NONE                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | NONE                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 101                                                |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | OPERATING I                                                                  | ARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potential                                               |                                                                       |
| Natural Gas (Mcf) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 63,537                                                                       | Natural Gas (Mcf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | 1,752,00                                                              |
| Max Sulfur Content (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          | 0.01                                                                         | Max Sulfur Conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | 0.0                                                                   |
| Max Ash Content (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          | 0.00                                                                         | Max Ash Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 0.0                                                                   |
| HHV Gas (BTU/cf) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 1,000                                                                        | HHV Gas (BTU/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | 1,00                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                       |
| #6 Fuel Oil (gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 0                                                                            | #6 Fuel Oil (gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 11.918.36                                                             |
| #6 Fuel Oil (gal) =<br>Max Sulfur Content (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          | -                                                                            | #6 Fuel Oil (gal) =<br>Max Sulfur Conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                       |
| Max Sulfur Content (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 0.79                                                                         | Max Sulfur Conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | 0.7                                                                   |
| Max Sulfur Content (<br>Max Ash Content (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          | 0.79<br>0.1                                                                  | Max Sulfur Conte<br>Max Ash Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt (%) =<br>(%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | 0.7<br>0                                                              |
| Max Sulfur Content (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          | 0.79                                                                         | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt (%) =<br>(%) =<br>BTU/gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 0.7<br>0<br>14                                                        |
| Max Sulfur Content (<br>Max Ash Content (%<br>HHV Fuel Oil (MBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          | 0.79<br>0.1<br>147<br>500                                                    | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) =<br>(%) =<br>BTU/gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 11,918,36<br>0.7<br>0<br>14<br>8,76                                   |
| Max Sulfur Content (<br>Max Ash Content (%<br>HHV Fuel Oil (MBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) =<br>U/gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 0.79<br>0.1<br>147<br>500                                                    | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt (%) =<br>(%) =<br>BTU/gal) =<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | 0.7<br>0<br>14<br>8,76                                                |
| Max Sulfur Content ( Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) =<br>U/gal) =<br>Source of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units of                                                                                                                                 | 0.79<br>0.1<br>147<br>500<br>EMISSION C                                      | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) = (%) = BTU/gal) = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PTE                                                     | 0.7<br>0<br>14<br>8,76                                                |
| Max Sulfur Content (<br>Max Ash Content (%<br>HHV Fuel Oil (MBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U/gal) =  Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Emission                                                                                                                                 | 0.79<br>0.1<br>147<br>500<br>EMISSION C                                      | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours a<br>ALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt (%) =<br>(%) =<br>BTU/gal) =<br>=<br>Actual<br>Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Natural Gas                                        | 0.7<br>0<br>14<br>8,76<br>PTE<br>100 % #6 Fuel Oil                    |
| Max Sulfur Content ( Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source of Emission Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Emission<br>Factor                                                                                                                       | 0.79 0.1 147 500  EMISSION Co                                                | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) = (%) = BTU/gal) = = Actual Emissions (ton/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100% Natural Gas<br>(ton/yr)                            | 0.7<br>0<br>14<br>8,76                                                |
| Max Sulfur Content ( Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source of Emission Factor AP-42(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission<br>Factor<br>Ib/MMCF                                                                                                            | 0.79<br>0.1<br>147<br>500<br>EMISSION C                                      | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours *<br>ALCULATIONS<br>on Factors #6 Fuel Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt (%) =<br>(%) =<br>BTU/gal) =<br>=<br>Actual<br>Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Natural Gas                                        | 0.7<br>0<br>14<br>8,76<br>PTE<br>100 % #6 Fuel Oil<br>(ton/yr)        |
| Max Sulfur Content (% Max Ash Content (% HHY Fuel Oil (MBT Operation Hours =  Pollutant NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source of Emission Factor AP-42(1) AP-42(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Emission<br>Factor<br>Ib/MMCF<br>Ib/10^3 gal                                                                                             | 0.79 0.1 147 500  EMISSION CA  Emissic Natural Gas 550                       | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours a<br>ALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt (%) = (%) = BTU/gal) = - Actual Emissions (ton/yr) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100% Natural Gas<br>(ton/yr)<br>482                     | 0.7<br>0<br>14<br>8,76<br>PTE<br>100 % #6 Fuel Oil                    |
| Max Sulfur Content ( Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) = U/gal) = Source of Emission Factor AP-42(1) AP-42(4) AP-42(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Emission<br>Factor<br>Ib/MMCF<br>Ib/10^3 gal                                                                                             | 0.79 0.1 147 500  EMISSION Co                                                | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours * ALCULATIONS  In Factors #6 Fuel Oil 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) = (%) = BTU/gal) = = Actual Emissions (ton/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100% Natural Gas<br>(ton/yr)                            | 0:<br>0 1<br>1, 8,70<br>PTE<br>100 % #6 Fuel Oi<br>(ton/yr)           |
| Max Sulfur Content (% Max Ash Content (% HTV Fuel Oil (MBT Operation Hours =  Pollutant NOx CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source of Emission Factor AP-42(1) AP-42(4) AP-42(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Emission<br>Factor<br>Ib/MMCF<br>Ib/10^3 gal<br>Ib/MMCF<br>Ib/10^3 gal                                                                   | 0.79 0.1 147 500  EMISSION C.  Emissic Natural Gas 550 40                    | Max Sulfur Conte<br>Max Ash Content<br>HHV Fuel Oil (M<br>Operation Hours *<br>ALCULATIONS<br>on Factors #6 Fuel Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt (%) = (%) = (%) = BTU/gal) = - Actual Emissions (ton/yr) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482                     | 0.<br>0<br>1-<br>8,70<br>PTE<br>100 % #6 Fuel Oi<br>(ton/yr)          |
| Max Sulfur Content ( Max Ash Content ( MHV Fuel Oil (MBT Operation Hours =  Pollutant NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source of Emission Factor AP-42(1) AP-42(4) AP-42(4) AP-42(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF                                                                          | 0.79 0.1 147 500  EMISSION CA  Emissic Natural Gas 550                       | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours *  ALCULATIONS  In Factors  #6 Fuel Oil  67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) = (%) = BTU/gal) = - Actual Emissions (ton/yr) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100% Natural Gas<br>(ton/yr)<br>482                     | 0.7<br>0 18,76<br>PTE 100 % #6 Fuel Oil (ton/yr) 399                  |
| Max Sulfur Content (% Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =  Pollutant NOx CO  NMTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source of Emission   Factor   AP-42(1)   AP-42(4)   AP-42(3)   AP-42(3)   AP-42(5)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal                                                              | 0.79 0.11 147 500  EMISSION C.  Emission S.  Natural Gas 550 40 1.7          | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours * ALCULATIONS  In Factors #6 Fuel Oil 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100% Natural Gas<br>(ton/yr)<br>482<br>35               | 0:<br>0 1<br>1, 8,70<br>PTE<br>100 % #6 Fuel Oi<br>(ton/yr)           |
| Max Sulfur Content (% Max Ash Content (% HTV Fuel Oil (MBT Operation Hours =  Pollutant NOx CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source of Emission   Factor   AP-42(1)   AP-42(4)   AP-42(4)   AP-42(5)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF                                                      | 0.79 0.1 147 500  EMISSION C.  Emissic Natural Gas 550 40                    | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours * ALCULATIONS  In Factors  #6 Fuel Oil 67  5  0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt (%) = (%) = (%) = BTU/gal) = - Actual Emissions (ton/yr) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482                     | 0:<br>0 1<br>8,74<br>PTE<br>100 % 86 Fuel Oi<br>(ton/yr)<br>399<br>30 |
| Max Sulfur Content (% Max Ash Content (% HHY Fuel Oil (MBT Operation Hours =  Pollutant NOx CO  NMTOC  PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source of Emission   Factor   AP-42(1)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(4)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal                                          | 0.79 0.1 147 500  EMISSION C.  Emissic Natural Gas 550 40 1.7                | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours *  ALCULATIONS  In Factors  #6 Fuel Oil  67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (%) = (%) = (%) = (%) = BTU/gal) = Actual Emissions (ton/yr) 17 1.3 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Natural Gas<br>(ton/yr)<br>482<br>35               | 0.0<br>0.0<br>8.76<br>PTE<br>100 % #6 Fuel Oi<br>(ton/yr)<br>399      |
| Max Sulfur Content (% Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =  Pollutant NOx CO  NMTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source of Emission   Factor   AP-42(1)   AP-42(4)   AP-42(5)   AP-42(4)   AP-42(5)   AP-42(4)   AP-42(4)   AP-42(5)   AP-42(4)   AP-42(4)   AP-42(4)   AP-42(4)   AP-42(2)   AP-42(4)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF                                  | 0.79 0.11 147 500  EMISSION C.  Emission S.  Natural Gas 550 40 1.7          | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours * ALCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100% Natural Gas<br>(ton/yr)<br>482<br>35               | 0:<br>0 1<br>8,74<br>PTE<br>100 % 86 Fuel Oi<br>(ton/yr)<br>399<br>30 |
| Max Sulfur Content (Max Ash Content (Max Ash Content (Max Ash Content (Max Max Ash Content (Max Max Ash Content (Max Max Ash Content (Max Max Max Max Max Max Max Max Max Max                                                                                                                                                                                                                                                                                                                                                                                                                    | Source of Emission Factor   AP-42(1)   AP-42(4)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(3)   AP-42(4)   AP-42(4)   AP-42(4)   AP-42(4)   AP-42(5)   AP-42(6)   AP- | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF              | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours * ALCULATIONS  In Factors  #6 Fuel Oil 67  5  0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0:<br>0 1<br>8,74<br>PTE<br>100 % 86 Fuel Oi<br>(ton/yr)<br>399<br>30 |
| Max Sulfur Content (% Max Ash Content (% HHY Fuel Oil (MBT Operation Hours =  Pollutant NOx CO  NMTOC  PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.1 147 500  EMISSION C.  Emissic Natural Gas 550 40 1.7                | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = (%) = BTU/gal) = Actual Emissions (ton/yr) 17 1.3 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5        | 0: 0                                                                  |
| Max Sulfur Content (Max Ash Content (Max Ash Content (Max Ash Content (Max Max Ash Content (Max Max Ash Content (Max Max Ash Content (Max Max Max Max Max Max Max Max Max Max                                                                                                                                                                                                                                                                                                                                                                                                                    | Source of Emission Factor   AP-42(1)   AP-42(4)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(2)   AP-42(3)   AP-42(4)   AP-42(4)   AP-42(4)   AP-42(4)   AP-42(5)   AP-42(6)   AP- | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF              | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours * ALCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0: 0                                                                  |
| Max Sulfur Content (% Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =  Pollutant  NOx  CO  NMTOC  PM  PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM PM SOX Antimony Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =  Pollutant  NOx  CO  NMTOC  PM  PM <sub>10</sub> SOx  Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM PM SOX Antimony Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM PM SOx Antimony Arsenic Beryllium Cadmium Cadmium Chromium Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Content (% NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Cadmium Content (% NMTOC NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Paryllium Cadmium Cadmium Content (% NMTOC NMTOC NMTOC PM PM <sub>10</sub> SOx PM PM PM <sub>10</sub> SOX PM | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM PM SOx Antimony Arsenic Beryllium Cadmium Cadmium Chromium Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source of Emission   Factor   AP-42(1)   AP-42(2)   A | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^4 gal Ib/MMCF % PM Ib/MMCF | 0.79 0.11 147 500  EMISSION C.  Emission Source Natural Gas 550 40 1.7 3.0   | Max Sulfur Conte Max Ash Content HHV Fuel Oil Operation Hours  **ALCULATIONS**  **In Factors**  **In Factors** | nt (%) = (%) = (%) = BTU/gal) =  Actual Emissions (ton/yr) 17  1.3  0.05  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% Natural Gas<br>(ton/yr)<br>482<br>35<br>1.5<br>2.6 | 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
| Max Sulfur Content (% Max Ash Content (% HHV Fuel Oil (MBT Operation Hours =  Pollutant  NOX  CO  NMTOC  PM  PM <sub>10</sub> SOx  Antimony  Arsenic  Beryllium  Cadmium  Chromium  Cobalt  Lead                                                                                                                                                                                                                                                                                                                                                                                                 | Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF 1b/10°3 gal  | 0.79 0.11 147 500  EMISSION C.  Emission Natural Gas 550 40 1.7 3.0 3.0 0.60 | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours ** LCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76 10.48 71 128.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) | 100% Natural Gas (ton/yr) 482 35 1.5 2.6 2.6 0.53       | 0: C C C C C C C C C C C C C C C C C C C                              |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF 1b/10°3 gal  | 0.79 0.11 147 500  EMISSION C.  Emission Natural Gas 550 40 1.7 3.0 3.0 0.60 | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours ** LCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76 10.48 71 128.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) | 100% Natural Gas (ton/yr) 482 35 1.5 2.6 2.6 0.53       | 0: C C C C C C C C C C C C C C C C C C C                              |
| Max Sulfur Content (Max Ash Content (Max Ash Content (Max Ash Content (Max Max Ash Content (Max Max Ash Content (Max Max Max Max Max Max Max Max Max Max                                                                                                                                                                                                                                                                                                                                                                                                                                         | Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF 1b/10°3 gal  | 0.79 0.11 147 500  EMISSION C.  Emission Natural Gas 550 40 1.7 3.0 3.0 0.60 | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours ** LCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76 10.48 71 128.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) | 100% Natural Gas (ton/yr) 482 35 1.5 2.6 2.6 0.53       | 0: 0                                                                  |
| Max Sulfur Content ( Max Ash Content ( Max Ash Content ( MTV Fuel Oil (MBT Operation Hours =  Pollutant  NOx  CO  NMTOC  PM  PM  PM  SOx  Antimony  Arsenic  Beryllium  Chromium  Chromium  Cobalt  Lead  Manganese  Mercury  Nickel                                                                                                                                                                                                                                                                                                                                                             | Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF 1b/10°3 gal  | 0.79 0.11 147 500  EMISSION C.  Emission Natural Gas 550 40 1.7 3.0 3.0 0.60 | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours ** LCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76 10.48 71 128.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) | 100% Natural Gas (ton/yr) 482 35 1.5 2.6 2.6 0.53       | 0: 0                                                                  |
| Max Sulfur Content (% HTV Fuel Oil (MBT Operation Hours = Pollutant NOx CO NMTOC PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF 1b/10°3 gal  | 0.79 0.11 147 500  EMISSION C.  Emission Natural Gas 550 40 1.7 3.0 3.0 0.60 | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours ** LCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76 10.48 71 128.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) | 100% Natural Gas (ton/yr) 482 35 1.5 2.6 2.6 0.53       | 0: 0                                                                  |
| Max Sulfur Content ( Max Ash Content ( Max Ash Content ( MTV Fuel Oil (MBT Operation Hours =  Pollutant  NOx  CO  NMTOC  PM  PM  PM  SOx  Antimony  Arsenic  Beryllium  Chromium  Chromium  Cobalt  Lead  Manganese  Mercury  Nickel                                                                                                                                                                                                                                                                                                                                                             | Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF 1b/10°3 gal  | 0.79 0.11 147 500  EMISSION C.  Emission Natural Gas 550 40 1.7 3.0 3.0 0.60 | Max Sulfur Conte Max Ash Content HHV Fuel Oil (M Operation Hours ** LCULATIONS  In Factors  #6 Fuel Oil 67 5 0.76 10.48 71 128.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) = (%) | 100% Natural Gas (ton/yr) 482 35 1.5 2.6 2.6 0.53       | 0: 0                                                                  |

- Section 1.4, Natural Gas Combustion; Table 1.4-2.
  Section 1.4, Natural Gas Combustion; Table 1.4-1.
  Section 1.4, Natural Gas Combustion; Table 1.4-3.
  Section 1.3 Fuel Oil Combustion; Table 1.3-2.
  Section 1.3, Fuel Oil Comb

### Unit 2 Public Service Company of Colorado, Zuni Station Criteria and HAP Emissions

|                                                                                                                                               |                                                                                                                                                                                | 003                                                                                                                                             |                                        | Unit Code: B0                            |                                                      |                                                                        | Space Heat (%)                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                               | Seasonal Fuel                                                                                                                                                                  | Usage (%)                                                                                                                                       |                                        |                                          | nal Operation of U                                   | Hours/year                                                             | Space Freak (74)                                                           |
| Dec-Feb                                                                                                                                       | Mar-May                                                                                                                                                                        | Jun-Aug                                                                                                                                         | Sep-Nov                                | Hours/Day<br>24                          | Days/Week                                            | 8760                                                                   | 0                                                                          |
| 33                                                                                                                                            | 37                                                                                                                                                                             | 28                                                                                                                                              | 2                                      |                                          |                                                      |                                                                        |                                                                            |
|                                                                                                                                               | BOILER SPECI                                                                                                                                                                   | ICATIONS                                                                                                                                        |                                        |                                          | STAC                                                 | K DATA                                                                 | 250                                                                        |
| ırnace Type:                                                                                                                                  | Wo-Drumb Boiler                                                                                                                                                                |                                                                                                                                                 |                                        | Height (ft)                              |                                                      |                                                                        | 12                                                                         |
| lanufacturer:                                                                                                                                 | Babcock & Wilcox                                                                                                                                                               |                                                                                                                                                 | Į                                      | Inside Diameter (ft)                     | A CENA                                               |                                                                        |                                                                            |
| odel & Serial #:                                                                                                                              | 17869                                                                                                                                                                          |                                                                                                                                                 |                                        | Exhaust Flow Rate (                      |                                                      | Max                                                                    | 580,000                                                                    |
| nit Description:                                                                                                                              | N/A                                                                                                                                                                            |                                                                                                                                                 | !                                      | Normal                                   | 210,000                                              | Max                                                                    | 30.96                                                                      |
| irst Service or Last Me                                                                                                                       | od. Date:                                                                                                                                                                      | 1953                                                                                                                                            |                                        | Exhaust Velocity (fr                     |                                                      |                                                                        | ST                                                                         |
| fax Continuous Rating                                                                                                                         | (MMBTU/hr):                                                                                                                                                                    |                                                                                                                                                 | Natural Gas                            | Calculated or Stack                      |                                                      |                                                                        | 500                                                                        |
|                                                                                                                                               |                                                                                                                                                                                | 1075                                                                                                                                            | #6 Fuel Oil                            | Exhaust Temperatur<br>Exhaust Moisture C |                                                      | 4) (%)                                                                 |                                                                            |
| M                                                                                                                                             | aximum Hourly Fu                                                                                                                                                               | el Usage (units/hr)                                                                                                                             |                                        | Normal                                   | 10                                                   | Max                                                                    | 16                                                                         |
| Fuel T                                                                                                                                        |                                                                                                                                                                                | Unit                                                                                                                                            | Rate                                   | Orientation of Relea                     |                                                      |                                                                        | Up                                                                         |
| Natural                                                                                                                                       |                                                                                                                                                                                | Mcf/hr                                                                                                                                          | 1,075                                  | Rainhat or Other Of                      |                                                      |                                                                        | None                                                                       |
| #6 Fuel                                                                                                                                       | Oil                                                                                                                                                                            | gal/hr                                                                                                                                          | 7,313                                  | Rainnat or Other Or                      |                                                      |                                                                        |                                                                            |
|                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                 |                                        |                                          |                                                      | Technology, %                                                          | 00                                                                         |
| Does the boiler/furnace                                                                                                                       | have control techr                                                                                                                                                             | ology (Y/N)                                                                                                                                     | N                                      | Control                                  | NOx                                                  | PM                                                                     | SOx                                                                        |
| oes the boller/furnaci                                                                                                                        | nave control teem                                                                                                                                                              | 0.08) (1)                                                                                                                                       |                                        | None                                     | 0                                                    | 0                                                                      | 0                                                                          |
|                                                                                                                                               |                                                                                                                                                                                | Conde                                                                                                                                           |                                        | Adsor                                    | bers                                                 | Catalytic/Ther                                                         |                                                                            |
| Miscella                                                                                                                                      |                                                                                                                                                                                | 2000-401                                                                                                                                        | nsers<br>NONE                          |                                          | IONE                                                 |                                                                        | IONE                                                                       |
| 2000-400                                                                                                                                      | NONE                                                                                                                                                                           |                                                                                                                                                 |                                        |                                          |                                                      | Baghouses/I                                                            | abric Filters                                                              |
| Cyclones/Settli                                                                                                                               | ng Chambers                                                                                                                                                                    | Electrostatic                                                                                                                                   |                                        | Wet Collecti                             | on Systems<br>NONE                                   |                                                                        | NONE                                                                       |
| 2000-404                                                                                                                                      | NONE                                                                                                                                                                           | 2000-405                                                                                                                                        | NONE                                   |                                          | NOINE                                                | 2000-401                                                               |                                                                            |
|                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                 | OPERATING                              | PARAMETERS                               |                                                      |                                                                        |                                                                            |
|                                                                                                                                               | 199                                                                                                                                                                            | 4                                                                                                                                               |                                        |                                          |                                                      | Potential                                                              |                                                                            |
|                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                 | 139,073                                | Natural Gas (Mcf)                        | 12                                                   |                                                                        | 9,417,00                                                                   |
| Natural Gas (Mcf) =                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                 | 0.01                                   | Max Sulfur Conter                        |                                                      |                                                                        | 0.0                                                                        |
| Max Sulfur Content (                                                                                                                          |                                                                                                                                                                                |                                                                                                                                                 | 0.00                                   | Max Ash Content                          |                                                      |                                                                        | 0.0                                                                        |
| Max Ash Content (%)                                                                                                                           | =                                                                                                                                                                              |                                                                                                                                                 | 1,000                                  | HHV Gas (BTU/c                           |                                                      |                                                                        | 1,0                                                                        |
| HHV Gas (BTU/cf) =                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                 | 30                                     | #6 Fuel Oil (gal) =                      |                                                      |                                                                        | 64,061,2                                                                   |
| #6 Fuel Oil (gal) =                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                 | 0.79                                   | Max Sulfur Conte                         |                                                      |                                                                        | 0.                                                                         |
| Max Sulfur Content (                                                                                                                          |                                                                                                                                                                                |                                                                                                                                                 | 0.1                                    | Max Ash Content                          |                                                      |                                                                        | C                                                                          |
| Max Ash Content (%                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                 | 147                                    | HHV Fuel Oil (M                          |                                                      |                                                                        | 1                                                                          |
| HHV Fuel Oil (MBT                                                                                                                             | ∪/gai) ≖                                                                                                                                                                       |                                                                                                                                                 | 130                                    | Operation Hours                          |                                                      |                                                                        | 8,7                                                                        |
| Operation Hours =                                                                                                                             |                                                                                                                                                                                |                                                                                                                                                 |                                        |                                          |                                                      |                                                                        |                                                                            |
|                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                 | EMISSION C                             | CALCULATIONS                             |                                                      |                                                                        |                                                                            |
|                                                                                                                                               | Source of                                                                                                                                                                      | 1 11.0                                                                                                                                          |                                        |                                          | Actual                                               | PTE                                                                    |                                                                            |
|                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                 |                                        |                                          | Actum                                                |                                                                        | PTE                                                                        |
| Pollutant                                                                                                                                     | 1                                                                                                                                                                              | Units of                                                                                                                                        | Emissi                                 | ion Factors                              | Emissions                                            | 100% Natural Gas                                                       | 100 % #6 Fuel Oil                                                          |
|                                                                                                                                               | Emission                                                                                                                                                                       | Emission                                                                                                                                        |                                        | ion Factors<br>#6 Fuel Oil               | 1                                                    | 100% Natural Gas<br>(ton/yr)                                           | l                                                                          |
|                                                                                                                                               | Emission<br>Factor                                                                                                                                                             | Emission<br>Factor                                                                                                                              | Emissi<br>Natural Gas<br>550           |                                          | Emissions                                            | 100% Natural Gas                                                       | 100 % #6 Fuel Oil<br>(ton/yr)                                              |
| NOx                                                                                                                                           | Emission<br>Factor<br>AP-42(1)                                                                                                                                                 | Emission<br>Factor<br>Ib/MMCF                                                                                                                   | Natural Gas                            |                                          | Emissions<br>(ton/yr)                                | 100% Natural Gas<br>(ton/yr)<br>2,590                                  | 100 % #6 Fuel Oil                                                          |
| NOx                                                                                                                                           | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)                                                                                                                                     | Emission<br>Factor<br>Ib/MMCF<br>Ib/10^3 gal                                                                                                    | Natural Gas                            | #6 Fuel Oil                              | Emissions<br>(ton/yr)                                | 100% Natural Gas<br>(ton/yr)                                           | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146                                     |
|                                                                                                                                               | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)                                                                                                                         | Emission<br>Factor<br>Ib/MMCF<br>Ib/10^3 gal<br>Ib/MMCF                                                                                         | Natural Gas<br>550                     | #6 Fuel Oil                              | Emissions<br>(ton/yr)<br>38                          | 100% Natural Gas<br>(ton/yr)<br>2,590                                  | 100 % #6 Fuel Oil<br>(ton/yr)                                              |
| NOx<br>CO                                                                                                                                     | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(4)                                                                                                             | Emission<br>Factor<br>Ib/MMCF<br>Ib/10^3 gal<br>Ib/MMCF<br>Ib/10^3 gal                                                                          | Natural Gas<br>550                     | #6 Fuel Oil                              | Emissions<br>(ton/yr)<br>38                          | 100% Natural Gas<br>(ton/yr)<br>2,590                                  | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146                                     |
| NOx                                                                                                                                           | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(4)<br>AP-42(3)                                                                                                 | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF                                                                                 | Natural Gas<br>550<br>40               | #6 Fuel Oil                              | Emissions<br>(ton/yr)<br>38<br>2.8                   | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188                           | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146                                     |
| NOx<br>CO<br>NMTOC                                                                                                                            | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(4)<br>AP-42(3)<br>AP-42(5)                                                                                     | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal                                                                     | Natural Gas<br>550<br>40               | #6 Fuel Oil<br>67                        | Emissions<br>(ton/yr)<br>38                          | 100% Natural Gas<br>(ton/yr)<br>2,590                                  | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24                        |
| NOx<br>CO                                                                                                                                     | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(5)<br>AP-42(2)                                                                         | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal                                                 | Natural Gas 550 40 1.7                 | #6 Fuel Oil<br>67                        | Emissions (ton/yr) 38 2.8 0.12 0.21                  | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0                    | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146                                     |
| NOx CO NMTOC PM                                                                                                                               | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)                                                             | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal                                                                     | Natural Gas 550 40 1.7                 | #6 Fuel Oil 67 5                         | Emissions<br>(ton/yr)<br>38<br>2.8                   | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188                           | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336                         |
| NOx<br>CO<br>NMTOC                                                                                                                            | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(4)<br>AP-42(3)<br>AP-42(5)<br>AP-42(2)<br>AP-42(4)<br>AP-42(2)                                                 | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal Ib/MMCF Ib/10^3 gal                                                 | Natural Gas 550 40 1.7 3.0             | #6 Fuel Oil 67 5                         | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24                        |
| NOx CO NMTOC PM PM <sub>te</sub>                                                                                                              | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(4)<br>AP-42(3)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(2)<br>AP-42(2)<br>AP-42(2)<br>AP-42(6)             | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF                     | Natural Gas 550 40 1.7 3.0             | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21                  | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0                    | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOx CO NMTOC PM                                                                                                                               | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10°3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336                         |
| NOx CO NMTOC PM PM SOx                                                                                                                        | Emission<br>Factor<br>AP-42(1)<br>AP-42(4)<br>AP-42(1)<br>AP-42(4)<br>AP-42(3)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(2)<br>AP-42(2)<br>AP-42(2)<br>AP-42(6)             | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOX CO NMTOC PM PM <sub>10</sub> SOX Antimony                                                                                                 | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOX CO NMTOC PM PM <sub>11</sub> SOX Antimony Arsenic                                                                                         | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOx CO NMTOC PM PM FM SOx Antimony Arsenic Beryllium                                                                                          | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOx CO NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium                                                                       | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOx CO NMTOC PM PM <sub>11</sub> SOx Antimony Arsenic Beryllium Cadmium Chromium                                                              | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas<br>550<br>40<br>1.7<br>3.0 | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238<br>3,767 |
| NOx CO NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Cobalt                                                                | Emission Factor AP-42(1) AP-42(1) AP-42(1) AP-42(1) AP-42(3) AP-42(5) AP-42(5) AP-42(2) AP-42(2) AP-42(2) AP-42(4) AP-42(4)                                                    | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48                 | Emissions (ton/yr) 38 2.8 0.12 0.21 0.15             | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14              | 100 % #6 Fuel Oil<br>(ton/yr)<br>2,146<br>160<br>24<br>336<br>238          |
| NOx CO NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Chromium Ccoball Lead                                                 | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(3)<br>AP-42(3)<br>AP-42(2)<br>AP-42(4)<br>AP-42(4)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6)<br>AP-42(6) | Emission Factor Ib/MMCF Ib/10^3 gal Ib/MMCF | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |
| NOx  CO  NMTCC  PM  PM  SOx  Antimony  Arsenic  Beryllium  Cadmium  Chomium  Cobail  Lead  Manganese                                          | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(4)                         | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |
| NOx CO NMTOC PM PM PM SOx Animony Arsenic Beryllium Cadmium Chomium Cobalt Lead Manganese Mercury                                             | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(4)                         | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |
| NOx CO NMTOC PM PM <sub>10</sub> SOx Antimony Arsenic Beryllium Cadmium Chromium Ccobalt Lead Manganese Mercury Nickel                        | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(4)                         | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |
| NOx  CO  NMTOC  PM  PM  SOx  Antimony  Arsenic  Beryllium  Cadmium  Chornium  Cobalt  Lead  Manganese  Mercury  Nickel  Selenium              | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(4)                         | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |
| NOx CO NMTOC PM PM PM FOX SOX Antimony Arsenic Beryllium Cadmium Chromium Cobatt Lead Manganese Mercury Nickel Selevinum Thalium              | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(4)                         | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |
| NOx  CO  NMTCC  PM  PM <sub>10</sub> SOx  Antimony  Arsenic  Beryllium  Cadmium  Chromium  Cobalt  Lead  Manganese  Mercury  Nickel  Selenium | Emission<br>Factor<br>AP-42(1)<br>AP-42(1)<br>AP-42(1)<br>AP-42(3)<br>AP-42(5)<br>AP-42(5)<br>AP-42(2)<br>AP-42(2)<br>AP-42(1)<br>AP-42(2)<br>AP-42(4)                         | Emission Factor Ib/MMCF Ib/10°3 gal         | Natural Gas 550 40 1.7 3.0 3.0 0.60    | #6 Fuel Oil 67 5 1 10.48 71 128.53       | Emissions (ton/yr)  38  2.8  0.12  0.21  0.15  0.044 | 100% Natural Gas<br>(ton/yr)<br>2,590<br>188<br>8.0<br>14<br>14<br>2.8 | 100 % #6 Fuel Oil<br>(ton/yr)  2,146  160  24  336  238  3,767             |

- Section 1.4, Natural Gas Combustion; Table 1.4-2.
  Section 1.4, Natural Gas Combustion; Table 1.4-1.
  Section 1.4, Natural Gas Combustion; Table 1.4-3.
  Section 1.3 Fuel Oil Combustion; Table 1.3-2.
  Section 1.3, Fuel Oil Comb

#### **Robinson Brick**

#### FOR THE RECORD

January 31, 2001

BY: Mike Jensen

Ref: Robinson Brick FID 0311447 97OPDE189

SUBJECT: PM10 PTE Review

On Friday, January 26, 2001, Mike Silverstein, APCD, called and asked for the PTE numbers for Robinson Brick. I gave him the numbers from the TRD. A copy of that page of the TRD is attached to this review for future reference as needed.

Gerry Dilley (303-629-5450 X240) from the RAQC called yesterday with a request for information about how the PTE for the PM10 for Robinson Brick was calculated. I reviewed the file and compiled the following information. The process design rates are taken from the Title V submittal. A copy of the summary page is attached to this review for future reference as needed. Emission factors shown were taken from the Title V permit. Reg 1 sets a particulate matter hourly limit for some sources. This limit would be an upper boundary in that while PM10 may be a fraction of the PM, it can not exceed the PM.

## F001/F005 Loader/Storage Piles/Unpaved Roads

This is all fugitive dust and not included in the facility PTE

Material Transfer:  $0.1 \times 0.35 = 0.04 \text{ TPY}$ Storage Piles:  $24.9 \times 0.35 = 8.72 \text{ TPY}$ **Total: 8.76 TPY** 

#### F002 Primary Crusher

Reg 1 =  $17.31(90)^{0.16}$  = 35.56 lb/hr 35.56 lb/hr X 8760 hr/yr X ton/2000 lb = 35.56 X 4.38 = 155.8 TPY

Design Rate: 90 ton/hr X 0.059 lb/ton X 4.38 hr-ton/yr-lb = 23.25 TPY PTE = 23.3 TPY

## F003 Grinding/Screening

Reg  $1 = 17.31(90)^{0.16} = 35.56 \text{ lb/hr}$ 35.56 lb/hr X 4.38 hr-ton/yr-lb = 155.8 TPY

Design Rate: 90 ton/hr X 0.0265 lb/ton X 4.38 hr-ton/yr-lb = 10.45 TPY

Permit Limit: 4.7 TPY PTE = 4.7 TPY

F004 Conveyor

Reg  $1 = 17.31(90)^{0.16} = 35.56 \text{ lb/hr}$ 

35.56 lb/hr X 4.38 hr-ton/yr-lb = 155.8 TPY

Design Rate: 90 ton/hr X 0.00029 lb/ton X 4.38 hr-ton/yr-lb = 0.11 TPY

PTE = 0.11

**TPY** 

**S001 Rotary Dryer** 

Reg  $1 = 17.31(35)^{0.16} = 30.57 \text{ lb/hr}$ 

30.57 lb/hr X 4.38 hr-ton/yr-lb = 133.9 TPY

Design Rate: 35 ton/hr X 0.16 lb/ton X 4.38 hr-ton/yr-lb = 24.53 TPY

PTE = 24.5

**TPY** 

## S002 – S005 Two Tunnel Dryers & two kilns

Reg  $1 = 3.59(13.4)^{0.62} = 17.9 \text{ lb/hr}$ 

17.9 lb/hr X 4.38 hr-ton/yr-lb = 78.59 TPY per line X 2 = 157.18 TPY

From Title V = 199,000 ton/yr X 0.87 lb/ton X ton/ 2000 lb = 86.6 TPY

Permit Limit = 130.8 TPY

PTE = 130.8

PTE = 13.14

**TPY** 

**S006 Rotary Calciner** Reg 1 = 3.59(10.0)<sup>0.62</sup> = 14.9 lb/hr

14.9 lb/hr X 4.38 hr-ton/yr-lb = 65.5 TPY

Design Rate: 10 ton/hr X 0.3 lb/ton X 4.38 hr-ton/yr-lb = 13.14 TPY

**TPY** 

#### PTE SUMMARY

| F002      | Primary Crusher                   | 23.3 TPY    |
|-----------|-----------------------------------|-------------|
| F003      | Grinding/Screening                | 4.7         |
| F004      | Conveyor                          | 0.11        |
| S001      | Rotary Dryer                      | 24.5        |
| S002-S005 | Two Tunnel Dryers and kilns 130.8 |             |
| S006      | Rotary Calciner                   | <u>13.1</u> |

**TOTAL** 196.5 TPY

#### **Rocky Mountain Bottle Company**

## **Trigen-Colorado Energy Corporation**

#### Facility-wide emissions are as follows:

|                                     |         |          | POTEN            | TIAL TO E       | MIT, TON | S PER YE | AR     |      |
|-------------------------------------|---------|----------|------------------|-----------------|----------|----------|--------|------|
|                                     |         | PM       | PM <sub>10</sub> | SO <sub>2</sub> | NOx      | VOC      | СО     | HAPs |
| B001 - 288 MM                       | Btu/hr  |          |                  |                 | ///      |          | ///    |      |
| N                                   | G       | 9.4      | 1                | 0.74            | 346.5    | 10.8     | 103.9  |      |
| #2                                  | 2 FO    | 18,02    | 9.01             | 410.2           | 216.3    | 1.8      | 45.1   |      |
| B002 - 288 MM                       | Btu/hr  |          |                  |                 |          |          |        |      |
| N                                   | G       | 9.4      | 54               | 0.74            | 346.3    | 10.8     | 103.9  |      |
| #2                                  | 2 FO    | 18.02    | 9.01             | 410)2           | 216.3    | 1.8      | 45.1   |      |
| B003 - 225 MM<br>Coal               | Btu/hr, | 2852.8   | 570.6            | 1612.60         | 380.4    | 2.16     | 216.1  |      |
| B004 - 360 MM                       | Btu/hr, |          |                  |                 |          |          | ///    |      |
| Pe                                  | ermit   | 158.0    | 158.0            | 1892.0          | 1004.0   | 19.21    | 88.30  |      |
| C                                   | oal*    | 5268.55  | 1218.92          | 2650.05         | 639.36   | 4.86     | 39.55  |      |
| N                                   | G       | 16.45    | 16.45            | 1.30            | 367.92   | 18.83    | 51.94  |      |
| #2                                  | 2 FO    | 28.03    | 14.02            | 638.15          | 336.38   | 2.80     | 70.08  |      |
| B005 - 650 MM                       | Btu/hr, |          |                  |                 |          |          |        |      |
| Pe                                  | ermit   | 285.0    | 285(0            | 341160          | 1993(0)  | 9.50     | 103.1  |      |
| C                                   | oal*    | 11084.15 | 2556.71          | 5557.73         | 1346.16  | 10.02    | 82.62  |      |
| N                                   | G       | 21.21    | 21.21            | 1.67            | 474.50   | 24.28    | 66.99  |      |
| #2                                  | 2 FO    | 40.67    | 20.34            | 925.89          | 488.06   | 4.07     | 101.68 |      |
| M001/C004 - Ra<br>dumper to hoppe   |         | 51.6     | .51,6            |                 |          |          |        |      |
| M001/C005 - Do<br>to transfer conve |         |          |                  |                 |          |          |        |      |
| M001/C006 -<br>Conveyor to Unsilos  | it 4    |          |                  |                 |          |          |        |      |
| M001/C008 -<br>Conveyor to Unsilos  | it 5    | 22.7     | 22.7             |                 |          |          |        |      |

# RECEIVED

FEB 2 2 2000

AIR POLLUTION CONTROL DIVISION STATIONARY SOURCES PROGRAM

|                                          | TDI                  | CEN COL                     |                       | it 1                                 | DBODAT                | PLON                    |                       |
|------------------------------------------|----------------------|-----------------------------|-----------------------|--------------------------------------|-----------------------|-------------------------|-----------------------|
|                                          | Criteria             | and HAP                     |                       | NERGY CO<br>from Natura              | ıl Gas or             |                         |                       |
| Stack Identificatio                      | n Code :             | S001                        |                       | Unit Code:                           | B001                  |                         |                       |
|                                          | Seasonal Fuel        | Usage (%)                   |                       | Norma                                | l Operation of        | Unit                    | Space Heat (%)        |
| Dec-Feb<br>25                            | Mar-May<br>25        | Jun-Aug<br>25               | Sep-Nov<br>25         | Hours/Day<br>24                      | Days/Week<br>7        |                         | 0                     |
|                                          | BOILER SPECIF        | ICATIONS                    |                       |                                      | STACK                 | DATA                    |                       |
| Furnace Type:                            | Wall Fired           |                             |                       | Height (ft)                          |                       |                         | 130                   |
| Manufacturer:                            | Combustion Eng       | incering                    |                       | Inside Diameter                      |                       |                         | 8                     |
| Model & Serial #:                        |                      |                             | I D - 11              | Exhaust Flow R.<br>Normal            | ate (ACFM)<br>110,000 | 34                      | 120,637               |
| Unit Description:<br>First Service or La |                      | stion waii-rired            | Boller                | Exhaust Velocit                      |                       | Max                     | 40.00                 |
| Maximum Continu                          |                      |                             | Natural Gas or        | Calculated or St                     |                       |                         | ST                    |
|                                          | (MMBTU/HR)           |                             | #2 Fuel Oil           | Exhaust Temper                       |                       | •                       | 380                   |
|                                          | mum Hourly Fuel      |                             |                       | Exhaust Moistur                      |                       |                         |                       |
| Fuel                                     |                      | Unit                        | Rate                  | Normal                               | . 10                  | Max                     | 16                    |
| Natura<br>#2 Fu                          |                      | Mcf/hr<br>gal/hr            | 271                   | Orientation of R<br>Rainhat or Other |                       |                         | Up<br>None            |
| #2 Pu                                    | ei Oii               | gai/nr                      | 2,075                 | Rainnai or Other                     |                       |                         |                       |
|                                          |                      |                             |                       |                                      |                       | Technology,             |                       |
| Does the boiler/fur                      | nace have control    | technology (Y/              | N                     | Control Devic<br>None                | NOx<br>0              | PM<br>0                 | SOx<br>0              |
| Miscell<br>2000-400                      | aneous<br>NONE       | Conde<br>2000-401           | nsers<br>NONE         | Adsor<br>2000-402                    | bers<br>NONE          | 2000-403                | mal Oxidation<br>NONE |
| Cyclones/Settl<br>2000-404               | ing Chambers<br>NONE | Electrostatic  <br>2000-405 | Precipitators<br>NONE | Wet Collection<br>2000-406           | on Systems<br>NONE    | Baghouses/F<br>2000-407 | abric Filters<br>NONE |
|                                          |                      |                             | OPERATING             | PARAMETERS                           |                       |                         |                       |
|                                          |                      | 1994 Revised                |                       |                                      | F                     | otential                |                       |
|                                          |                      |                             |                       |                                      |                       | •                       |                       |
| Btu corrected Natu<br>Avg. Sulfur Conte  |                      |                             | 210,746<br>0.01       | Btu corrected No<br>Avg. Sulfur Cor  |                       | :t) =                   | 2,373,960             |
| Avg. Ash Content                         |                      |                             | 0.00                  | Avg. Ash Conte                       |                       |                         | 0.00                  |
| HHV Gas (Btu/SC                          |                      |                             | 1,064                 | HHV Gas (Btu/S                       |                       |                         | 1,064                 |
| #2 Fuel Oil (gal) =                      |                      |                             | 0                     | #2 Fuel Oil (gal                     |                       |                         | 18,177,000            |
| Btu corrected Fuel                       |                      |                             | 0                     | Btu corrected Fu                     |                       |                         | 18,021,197            |
| Avg. Sulfur Conte<br>Avg. Ash Content    |                      |                             | 0.29                  | Avg. Sulfur Cor<br>Avg. Ash Conte    |                       |                         | 0.29                  |
| HHV Oil (Btu/gal)                        |                      |                             | 138,800               | HHV Oil (Btu/g                       |                       |                         | 0.01<br>138,800       |
| Operation Hours =                        |                      |                             | 8,544                 | Operation Hours                      |                       |                         | 8,760                 |
|                                          | FMISS                | ON CALCULA                  | TIONS                 |                                      |                       | Unit                    | 1                     |
|                                          | Source of            | Units of                    |                       |                                      | Actual                | PTE                     | PTE                   |
|                                          |                      |                             |                       | _                                    |                       | 100% Natural            | 100 % #2              |
| Pollutant                                | Emission             | Emission                    | Emissi                | on Factors                           | Emissions             | Gas                     | Fuel Oil              |
|                                          | Factor/CEM           | Factor                      | Natural Gas           | #2 Fuel Oil                          | (ton/yr)              | (ton/yr)                | (ton/yr)              |
| NOx                                      | AP-42[8]             | lb/MMCF                     | 280                   | 24                                   | 29.50<br>0.0          | 332                     | 214                   |
|                                          | AP-42[10]            | lb/10^3 gal                 | Total Ca              | 24<br>culated Emissions:             | 29.50                 |                         | 216                   |
| co                                       | AP-42[8]             | ib/MMCF                     | 84                    |                                      | 8.85                  | 100                     |                       |
|                                          | AP-42[10]            | lb/10^3 gal                 |                       | 5                                    | 0,00                  |                         | 45                    |
|                                          |                      |                             |                       | culated Emissions:                   | 8.851                 |                         |                       |
| TNMOC                                    | AP-42[9]             | lb/MMCF                     | 8.7                   | 44.0.00                              | 0.9167                | 10.33                   |                       |
|                                          | AP-42[11]            | lb/10^3 gal                 | Total C               |                                      | 0.000<br>0.917        |                         | 2                     |
| PM                                       | AP-42[9]             | lb/MMCF                     | 7.6                   | Curattu Ettissions.                  | 0.8008                | 9.02                    |                       |
|                                          | AP-42[10]            | ib/10^3 gal                 |                       | 2                                    | 0,0000                |                         | 18                    |
|                                          | ` '                  | , i                         |                       | culated Emissions:                   | 0.8008                |                         |                       |
| PM10                                     | AP-42[9]             | lb/MMCF                     | 7.6                   |                                      | 0.8008                | 9.02                    |                       |
|                                          | AP-42[12]            | lb/10^3 gal                 | Tatal C               | l<br>culated Emissions:              | 0.0000<br>0.8008      |                         | . 9                   |
| SOx                                      | AP-42[9]             | lb/MMCF                     | 0.60                  | curateu Emissions.                   | 0.063                 | 0.71                    |                       |
| JUA                                      | AP-42[10]            | 1b/10^3 gal                 |                       | 45.53                                | 0.000                 |                         | 410                   |
|                                          |                      | J                           |                       | culated Emissions:                   | 0.063                 |                         |                       |

# RECEIVED

FEB 2 2 2000

|                                       | AIR PULLUTION CONTROL DIVISION |
|---------------------------------------|--------------------------------|
| Unit 2<br>EN-COLORADO ENERGY CORPORAT | CTATIONARY COMPOSE PROGRAM     |

|                                         | TDIC                 | EEN-COL                |                       | it 2<br>NERGY CO                   | DDODAT             | cion S                    | TATIONARY SO           |
|-----------------------------------------|----------------------|------------------------|-----------------------|------------------------------------|--------------------|---------------------------|------------------------|
|                                         | Criteria             | and HAP                |                       | from Natura                        | l Gas or l         |                           |                        |
| Stack Identificatio                     | n Code :             | S002                   |                       | Unit Code:                         | B002               |                           |                        |
|                                         | Seasonal Fuel        | Usage (%)              |                       | Norma                              | Operation of       |                           | Space Heat (%)         |
| Dec-Feb                                 | Mar-May<br>25        | Jun-Aug<br>25          | Sep-Nov<br>25         | Hours/Day<br>24                    | Days/Week<br>7     | Hours/year<br>8760        | 0                      |
| 25                                      |                      |                        | 25                    | 6 C 2 C 3 C 4 FT 3 C               |                    |                           |                        |
|                                         | BOILER SPECIF        | ICATIONS               |                       |                                    | STACK              | DATA                      |                        |
| Furnace Type:                           | Wall Fired           |                        |                       | Height (ft)                        | (0)                |                           | 130                    |
| Manufacturer:<br>Model & Serial #:      | Combustion Eng       |                        |                       | Inside Diameter<br>Exhaust Flow R  |                    |                           | 8                      |
| Unit Description:                       |                      |                        | Doiler                | Normal                             | 110,000            | Max                       | 120,637                |
| First Service or La                     |                      | 1967                   | Donei                 | Exhaust Velocit                    |                    |                           | 40.00                  |
| Maximum Continu                         |                      | 288                    | Natural Gas or        | Calculated or St                   |                    |                           | ST                     |
|                                         | (MMBTU/HR)           |                        | #2 Fuel Oil           | Exhaust Temper                     |                    |                           | 380                    |
|                                         | mum Hourly Fuel      |                        | )                     | Exhaust Moistur                    |                    |                           |                        |
| Fuel                                    |                      | Unit                   | Rate                  | Normal                             | 10                 | Max                       | 16                     |
| Natura<br>#2 Fu                         |                      | Mcf/hr                 | 271                   | Orientation of R                   |                    |                           | Up<br>None             |
| #2 Fu                                   | ei Oii               | gal/hr                 | 2,075                 | Rainhat or Othe                    | r Obstruction      |                           | None                   |
|                                         |                      |                        |                       |                                    | Control            | Technology                | , %                    |
| Does the boiler/fur                     | rnace have control   | technology (Y/         | N                     | Control Devic                      | NOx                | PM                        | SOx                    |
|                                         |                      |                        |                       | None                               | 0                  | 0                         | 0 .                    |
| Miscell<br>2000-400                     | aneous<br>NONE       | Conde<br>2000-401      | nsers<br>NONE         | Adsor<br>2000-402                  | bers<br>NONE       | Catalytic/The<br>2000-403 | rmal Oxidation<br>NONE |
|                                         |                      |                        |                       |                                    |                    |                           |                        |
| Cyclones/Settl<br>2000-404              | ing Chambers<br>NONE | Electrostatic          | Precipitators<br>NONE | Wet Collecti<br>2000-406           | on Systems<br>NONE | Baghouses/<br>2000-407    | Fabric Filters<br>NONE |
|                                         |                      |                        | OPERATING             | PARAMETERS                         |                    | <del></del>               |                        |
|                                         |                      | 1994 Revised           |                       |                                    | P                  | otential                  |                        |
|                                         |                      |                        |                       |                                    |                    |                           |                        |
| Btu corrected Natu<br>Avg. Sulfur Conte |                      |                        | 200,792               | Btu corrected N<br>Avg. Sulfur Cor |                    | ci) =                     | 2,372,960<br>0.01      |
| Avg. Ash Content                        |                      |                        | 0.00                  | Avg. Sultur Con                    |                    |                           | 0.00                   |
| HHV Gas (Btu/SC                         |                      |                        | 1,064                 | HHV Gas (Btu/                      |                    |                           | 1.064                  |
| #2 Fuel Oil (gal) =                     |                      |                        | 291,439               | #2 Fuel Oil (gal                   | ) =                |                           | 18,177,000             |
| Btu corrected Fuel                      |                      |                        | 288,941               | Btu corrected Fr                   |                    | F                         | 18,021,197             |
| Avg. Sulfur Conte                       |                      |                        | 0.29                  | Avg. Sulfur Cor                    |                    |                           | 0.29                   |
| Avg. Ash Content                        |                      |                        | 0.01<br>138,800       | Avg. Ash Conte<br>HHV Oil (Btu/g   |                    |                           | 0.01<br>138,800        |
| HHV Oil (Btu/gal) Operation Hours =     |                      |                        | 7,920                 | Operation Hour                     |                    |                           | 8.760                  |
| Operation rious -                       |                      |                        | 7,520                 | Operation flour.                   | , -                |                           | 0,700                  |
|                                         | 1                    | EMISSION CAL           | LCULATIONS            | •                                  |                    |                           | Unit 2                 |
|                                         | Source of            | Units of               |                       |                                    | Actual             | PTE                       | PTE                    |
| Pollutant                               | Emission             | Emission               | Emissi                | on Factors                         | Emissions          | 100%                      | 100 % #2               |
|                                         | Factor/CEM           | Factor                 | Natural Gas           | #2 Fuel Oil                        | (ton/yr)           | Natural Gas<br>(ton/yr)   | Fuel Oil<br>(ton/yr)   |
| NOx                                     | AP-42[8]             | lb/MMCF                | Natural Gas           | #2 Fuel Oil                        | 28.1               | 332                       | (ioivyi)               |
| 1104                                    | AP-42[10]            | lb/10^3 gal            | 200                   | 24                                 | 3.5                | ""                        | 216                    |
|                                         | (,                   |                        | Total Ca              | lculated Emissions:                | 31.58              |                           |                        |
| CO                                      | AP-42[8]             | lb/MMCF                | 84                    |                                    | 8.43               | 100                       |                        |
|                                         | AP-42[10]            | lb/10^3 gal            | i                     | 5                                  | 0.72               |                           | 45                     |
|                                         | ļ                    |                        |                       | culated Emissions:                 | 9.156              |                           |                        |
| TNMOC                                   | AP-42[9]             | Ib/MMCF                | 8.7                   | 0.20                               | 0.8734             | 10                        |                        |
|                                         | AP-42[11]            | lb/10^3 gal            | Total Ca              | 0.20<br>lculated Emissions:        | 0.029<br>0.902     |                           | 2                      |
| PM                                      | AP-42[9]             | Ib/MMCF                | 7.6                   | Curateu Emissions:                 | 0.7630             | 9                         |                        |
|                                         | AP-42[10]            | lb/10^3 gal            | l                     | 2                                  | 0.2889             |                           | 18                     |
|                                         | 1                    | """                    | Total Ca              | lculated Emissions:                | 1.052              |                           | · ·                    |
| PM10                                    | AP-42[9]             | lb/MMCF                | 7.6                   |                                    | 0.7630             | 9                         |                        |
|                                         | AP-42[12]            | lb/10^3 gal            | l                     | 1                                  | 0.1445             |                           | 9                      |
|                                         | 18.44                |                        |                       | culated Emissions:                 | 0.907              | ļ                         | ļ                      |
| SOx                                     | AP-42[9]             | lb/MMCF<br>lb/10^3 gal | 0.60                  | 45.53                              | 0.060<br>6.578     | 1                         | 410                    |
|                                         | AP-42[10]            | 10/10-3 gal            | Total Ca              | 45.53<br>lculated Emissions:       | 6.638              |                           | 410                    |
|                                         | I                    |                        |                       | iculated Emissions:                | 0.038              |                           |                        |

## RECEIVED

#### FEB 2 2 2000

# AIR POLLUTION CONTROL DIVISION STATIONARY SOURCES PROGRAM

|                                                                                                                     |                                                                | mprons:                                    | Uni                                       |          | conre                              | D. ATLC:                                                                                      |                             |                                           |    |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|-------------------------------------------|----------|------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|----|
|                                                                                                                     |                                                                | TRIGEN-0                                   | COLORADO EN<br>Criteria and H             |          |                                    | RATION                                                                                        | <b>'</b>                    |                                           |    |
| Stack Identification                                                                                                | 1 Code :                                                       | S003                                       |                                           | 1        | Unit Code:                         | B003                                                                                          |                             |                                           |    |
|                                                                                                                     | Seasona                                                        | Fuel Usage (%)                             |                                           |          | Nori                               | nal Operation                                                                                 | of Unit S                   | pace Heat (9                              | 6) |
| Dec-Feb<br>25                                                                                                       | Mar-May<br>25                                                  | Jun-Aug<br>25                              | Sep-Nov<br>25                             |          | Hours/Day<br>24                    | Days/Week<br>7                                                                                | Hours/year<br>8,760         | 0                                         | ·  |
|                                                                                                                     | BOILER SPECIF                                                  | ICATIONS                                   |                                           |          |                                    | STACK                                                                                         | DATA                        |                                           |    |
| Furnace Type:<br>Manufacturer:<br>Model & Serial #:<br>Unit Description:<br>First Service or La:<br>Maximum Continu | Combustion E<br>CE-VU40, 170<br>External Comb<br>st Mod. Date: | 051<br>oustion Coal-fired<br>1981<br>225.0 |                                           |          | Normal<br>Exhaust Ve<br>Calculated | neter (ft)<br>ow Rate (acfm<br>100,000<br>locity (fps) at<br>or Stack Test (<br>mperature (F) | Max<br>MCR                  | 130<br>8<br>105,558<br>35.00<br>ST<br>360 |    |
| Maxie                                                                                                               | mum Hourly Fue                                                 | Usage (units/hr)                           |                                           | 1        | Exhaust Mc                         | isture Content                                                                                | (if modified)               | (%)                                       |    |
| Fuel T<br>SubBitumin                                                                                                | ype                                                            | Unit<br>ton/hr                             | Rate<br>9.90                              |          | Normal<br>Orientation              | NA                                                                                            | Max                         | NA<br>Up                                  |    |
|                                                                                                                     |                                                                | ŀ                                          |                                           | 1        | Rainhat or 6                       | Other Obstruct                                                                                | ion                         | None                                      |    |
| Does the boiler/furn                                                                                                | nace have contro                                               | technology (Y/                             | Y                                         | • (      | Contr<br>Control Devi<br>Baghouse  | rol Technology<br>NOx<br>0                                                                    | and Efficient<br>PM<br>99,9 | sy (%)<br>SOx                             |    |
| Miscella<br>2000-400                                                                                                | neous<br>NONE                                                  | Conden<br>2000-401                         | sors<br>NONE                              |          | Ads<br>2000-402                    |                                                                                               | Catalytic/Then<br>2000-403  | mal Oxidatio<br>NONE                      | n  |
| Cyclones/Settli<br>2000-404                                                                                         | ng Chambers<br>NONE                                            | Electrostatic P<br>2000-405                | NONE                                      |          | 2000-406                           | NONE                                                                                          | Baghouses/F<br>2000-407     | abric Filters<br>C001                     |    |
|                                                                                                                     |                                                                | 1994 Rev                                   | OPERATING Pa                              | ARAMETEI | RS                                 | Por                                                                                           | ential                      |                                           |    |
| Sub Bit Coal Fired<br>Avg. Sulfur Conter<br>Avg. Ash Content (<br>HHV Coal (Btu/lb)<br>Operation Hours =            | it (%) =<br>(%) =                                              |                                            | 47,876<br>0.45<br>7.00<br>11,400<br>7,752 |          | Avg. Sulfur                        | al Fired (tons) Content (%) = ontent (%) = (Btu/lb) =                                         |                             | 86,724<br>1<br>7<br>11,400<br>8,760       |    |
|                                                                                                                     | ** ******                                                      | EMISSIO                                    | N CALCULATIONS                            | <u> </u> |                                    |                                                                                               |                             | Unit 3                                    |    |
| Pollutant                                                                                                           | Source of<br>Emission<br>Factor                                | Units of<br>Emission<br>Factor             | Emission                                  |          |                                    | Actual<br>Emissions<br>(tpy)                                                                  | PTE<br>100% Coal<br>(tpy)   |                                           |    |
| NOx                                                                                                                 | AP-42[1]                                                       | lb/ton                                     | 8.8                                       |          |                                    | 211                                                                                           | 382                         |                                           |    |
| со                                                                                                                  | AP-42[1]                                                       | łb/ton                                     | 5.00                                      |          |                                    | 120                                                                                           | 217                         |                                           |    |
| NMTOC                                                                                                               | AP-42[1]                                                       | lb/ton                                     | 0.05                                      |          |                                    | 1                                                                                             | 2                           |                                           |    |
| РМ                                                                                                                  | AP-42[1]                                                       | lb/ton                                     | 66.00                                     |          |                                    | 2                                                                                             | 121                         |                                           |    |
| PM10                                                                                                                | AP-422]                                                        | lb/ton                                     | 13.20                                     |          |                                    | 0                                                                                             | 111                         |                                           |    |
| SOx                                                                                                                 | AP-42[1]                                                       | lb/ton                                     | 15.8                                      |          |                                    | 377                                                                                           | 1,774                       |                                           |    |

#### TRIGEN-COLORADO ENERGY CORPORATION Criteria and HAP Emissions from Coal, Alcohol, and Waste Oil S004 Stack Identification Code Normal Operation of Unit Space Heat (%) Hours/Day Days/Week Hours/year 24 7, 8,760 Seasonal Fuel Usage (%) -May Jun-Aug 5 25 Mar-May Sep-Nov Dec-Feb 25 25 25 BOILER SPECIFICATIONS STACK DATA Height (ft) Furnace Type: Tangential Firing Manufacturer: Combustion Engineering Model & Serial CE-VU40, 21321 Inside Diameter (ft) 8 Inside Diameter (it) Exhaust Flow Rate (acfm) Normal 150,000 M Exhaust Velocity (fps) at MCR Calculated or Stack Test (C/ST) Exhaust Temperature (F) Model & Serial LE-V-040, 21321 Unit Descriptio External Combustion Tangential Fired Boiler First Service or Last Mod. Date 1976 Maximum Continuous Rating: 371.0 Coal, Natu (MMBTU/HR) & Fue Max 174,924 58.00 ST 380 Coal, Natural Gas, & Fuel Oil Maximum Hourly Fue Fuel Type ibBituminous Coal Exhaust Moisture Content (if modified) (%) Normal 12 Max Orientation of Release sage (unit Unit ton/hr Rate 17.14 Waste Oil gal/hr 11 32.0 Rainhat or Other Obstruction Alcohol gal/hr None Control Technology and Efficiency (%) Control Devi NOx PM SOx Baghouse 0 99.9 0 Y Miscellaneous 0 NONE Catalytic/Thermal Oxidation 2000-403 NONE Adsorbers 2000-402 NONE 2000-400 2000-401 NONE Cyclones/Settling Chambers 2000-404 NONE Electrostatic Precipitators 2000-405 NONE Wet Collection Systems 2000-406 NONE Baghouses/Fabric Filters 2000-407 C002 OPERATING PARAMETERS 1994 Revised Sub Bit Coal Fired (tons) = Sub Bit Coal Fired (tons) = 124,107 150,171 Sub Bit Coal Fired (tons) = Avg. Sulfur Content (%) = Avg. Ash Content (%) = HHV Coal (Btu/lb) = Alcohol (gals) = Avg. Alcohol Sulfur Content (%) = Avg. Alcohol Ash Content (%) = HHV Alcohol (Btu/lon) = Water Oil Eight (each) = 0.45 7.00 11,400 283,445 0.34 Avg. Sulfur Content (%) = Avg. Ash Content (%) = HHV Coal (Btu/lb) = 11,400 283,445 0.34 Alcohol (gals) = Avg. Alcohol Sulfur Content (%) = Avg. Alcohol Ash Content (%) = HHV Alcohol (Btu/ton) = 0.1 2.00E+06 2.00E+06 HHV Alcohol (Btu/ton) = Waste Oil Fired (gals) = Avg. Sulfur Content (%) = Avg. Ash Content (%) = HHV Oil (Btu/gal) = Operation Hours = HHV Alcohol (Btu/ton) = Waste Oil Fired (gals) = Avg. Sulfur Content (%) = Avg. Ash Content (%) = HHV Oil (Btu/gal) = Operation Hours = 15,703 0.5 0.65 149,000 8,208 100,000 0.5 0.65 149,000 8,760 EMISSION CALCULATIONS Unit 4 Source of Units of PTE Coal and Pollutant Emission Emission Emission Factors Emissions 100% Coa Alcohol, Alcohol Waste Oil Factor/CEM Factor Coal Alcohol (tpy) (tpy) (tpy) (tpy) Waste Oil NOx AP-42[1] lb/ton 8.4 521 1.104 AP-42[9] lb/10^3 ga 21 3 1,104 0 AP-42(3) 1b/10^3 gal 19.0 1,104 Total Calculated this shee 524 CEM(5) AP-42[1] AP-42 [9] AP-42(3) NA | NA **644.01** 31.0 NA NA CO 88 00 3.6 1 0.04 88,00 88,00 Total Calculated this shee NMTOC AP-42[1] 5.30 0.4 0.1 AP-42[9] AP-42(3) lb/10^3 gal lb/10^3 gal 1.00 5.30 3.8 AP-42[1] lb/ton 4.3 0.0 0.0 158.00 0.600 lb/10^3 gal lb/10^3 gal AP-42[9] AP-42[8] 158.00 l Calcula d this she AP-42[4] AP-42[9] AP-42[8] lb/ton lb/10^3 gal lb/10^3 gal 158.00 158.00 Total Calcula ed this she 977 AP-42[1] 1,892.00 SOx 15.75 AP-42(2) AP-42(3) lb/10^3 ga 0.03 0 1,892.00 lb/10^3 gal 73.50 1,892.00 Total Calculated this shee

CEM(5)

NA

NA

Unit 4



FEB 2 2 2000

# Unit 5 TRIGEN-COLORADO ENERGY CORPORATION AIR POLLUTION CONTROL DIVISION Criteria and HAP Emissions from Coal, Alcohol, and Waste STATIONARY SOUTCES PROGRAM

|                                                              | tion Code :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S005                                                                                                                                                                                                                                                                |                                                                                 | <u> </u>                                                                                      | Unit Code:                                                                                                                                                            | B005                                                                                                                                                                    |                                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el Usage (%)                                                                                                                                                                                                                                                        |                                                                                 |                                                                                               |                                                                                                                                                                       | al Operation of                                                                                                                                                         |                                                         | pace Heat (%                                                                       | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dec-Feb<br>25                                                | Mar-May<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun-Aug<br>25                                                                                                                                                                                                                                                       | Sep-Nov<br>25                                                                   | 559097499                                                                                     | Hours/Day<br>24                                                                                                                                                       | Days/Week<br>7                                                                                                                                                          | Hours/year<br>8,760                                     | - 0                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 4J 800                                                                          | 100000000000000000000000000000000000000                                                       | 24.00                                                                                                                                                                 |                                                                                                                                                                         |                                                         | 0                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Furnace Type                                                 | BOILER SPEC<br>Tangential Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                 | -                                                                                             | Height (ft)                                                                                                                                                           | STACK                                                                                                                                                                   | DATA                                                    | 200                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manufacturer:                                                | Combustion E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                               | Inside Diame                                                                                                                                                          | ter (ft)                                                                                                                                                                |                                                         | 13                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Model & Seria                                                | CE-VU40, 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                               | Exhaust Flow                                                                                                                                                          |                                                                                                                                                                         |                                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              | n External Comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | tial Fired Boiler                                                               | ŀ                                                                                             |                                                                                                                                                                       | 290,000                                                                                                                                                                 | Max                                                     | 302,630                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              | Last Mod. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                 | i                                                                                             |                                                                                                                                                                       | city (fps) at N                                                                                                                                                         |                                                         | 38.00                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Maximum Con                                                  | tinuous Rating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 652.5                                                                                                                                                                                                                                                               | Coal, Natural Gas                                                               |                                                                                               |                                                                                                                                                                       | Stack Test (C                                                                                                                                                           | C/ST)                                                   | ST                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              | (MMBTU/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | & Fuel Oil                                                                      |                                                                                               | Exhaust Tem                                                                                                                                                           | perature (F)                                                                                                                                                            |                                                         | 380                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max                                                          | imum Hourly Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | el Usage (unit                                                                                                                                                                                                                                                      | s/hr)                                                                           | 1                                                                                             |                                                                                                                                                                       | sture Content                                                                                                                                                           | (if modified)                                           |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fue                                                          | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit                                                                                                                                                                                                                                                                | Rate                                                                            | ]                                                                                             | Normal                                                                                                                                                                | 12                                                                                                                                                                      | Max                                                     | 13                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              | inous Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ton/hr                                                                                                                                                                                                                                                              | 36.11                                                                           | l                                                                                             | Orientation o                                                                                                                                                         | f Release                                                                                                                                                               |                                                         | Up                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              | te Oil<br>ohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gal/hr<br>gal/hr                                                                                                                                                                                                                                                    | 23<br>129.4                                                                     |                                                                                               | Rainbat or O                                                                                                                                                          | ther Obstructi                                                                                                                                                          | on                                                      | None                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7111                                                         | AIIKII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                             | 127.1                                                                           |                                                                                               |                                                                                                                                                                       |                                                                                                                                                                         |                                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Down the builty                                              | furnace have co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntant sankarata                                                                                                                                                                                                                                                     | Υ                                                                               |                                                                                               | Contro<br>Control Devic                                                                                                                                               | l Technology<br>NOx                                                                                                                                                     | and Efficience                                          | cy (%)<br>SOx                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Does the boller                                              | riurnace nave co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ntroi tecnnoio                                                                                                                                                                                                                                                      | ,                                                                               | l '                                                                                           | Baghouse                                                                                                                                                              | 0                                                                                                                                                                       | 99 9                                                    | 0<br>0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                 | L                                                                                             |                                                                                                                                                                       |                                                                                                                                                                         |                                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Misce<br>2000-400                                            | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000-401                                                                                                                                                                                                                                                            | NONE                                                                            |                                                                                               | Adso<br>2000-402                                                                                                                                                      | orbers (<br>NONE                                                                                                                                                        | atalytic/Thei<br>2000-403                               |                                                                                    | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cyclones/Set                                                 | ling Chambers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     | : Precipitators                                                                 |                                                                                               |                                                                                                                                                                       | tion Systems                                                                                                                                                            | Baghouses/I                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000-404                                                     | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000-405                                                                                                                                                                                                                                                            | NONI:                                                                           |                                                                                               | 2000-406                                                                                                                                                              | NONE                                                                                                                                                                    | 2000-407                                                | C003                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARKER !                                                                                                                                                                                                                                                            |                                                                                 | NG PARA                                                                                       | METERS                                                                                                                                                                |                                                                                                                                                                         | 771                                                     |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1994 Revise                                                                                                                                                                                                                                                         | ru                                                                              | <del> </del>                                                                                  |                                                                                                                                                                       | Pot                                                                                                                                                                     | ential                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sub Bit Coal Fi                                              | red (tons) ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     | 234,930                                                                         |                                                                                               | Sub Bit Coal                                                                                                                                                          | Fired (tons) -                                                                                                                                                          |                                                         | 316,333                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg. Sulfur Co                                               | ntent (%) ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     | 0.45                                                                            | 1                                                                                             | Avg Sulfur C                                                                                                                                                          | ontent (%) ~                                                                                                                                                            |                                                         | 1                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg. Ash Cont                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 7.00                                                                            |                                                                                               | Avg. Ash Co.                                                                                                                                                          |                                                                                                                                                                         |                                                         | 7                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Coal (Bu                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 11,400                                                                          |                                                                                               | HHV Coal (E                                                                                                                                                           |                                                                                                                                                                         |                                                         | 11,400                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alcohol (gals)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 1,133,782                                                                       |                                                                                               | Alcohol (gals                                                                                                                                                         |                                                                                                                                                                         |                                                         | 1,133,782                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              | ulfur Content (%<br>sh Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     | 0.34<br>0.1                                                                     |                                                                                               |                                                                                                                                                                       | Sulfur Conte<br>Ash Content                                                                                                                                             |                                                         | 0.34                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Alcohol (                                                | Isn Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                   | 2,000,000                                                                       |                                                                                               | HHV Alcoho                                                                                                                                                            |                                                                                                                                                                         | (70) "                                                  | 2,000,000                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Waste Oil Fired                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 31,407                                                                          |                                                                                               | Waste Oil Fir                                                                                                                                                         |                                                                                                                                                                         |                                                         | 200,000                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg. Sulfur Co                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 0.5                                                                             | l                                                                                             | Avg. Sulfur C                                                                                                                                                         |                                                                                                                                                                         |                                                         | 0.5                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                               |                                                                                                                                                                       |                                                                                                                                                                         |                                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg. Ash Conto                                               | nt (%) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     | 0.65                                                                            |                                                                                               | Avg. Ash Co                                                                                                                                                           | ntent (%) =                                                                                                                                                             |                                                         | 0.65                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/)                                               | gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     | 149,000                                                                         |                                                                                               | Avg. Ash Co<br>HHV Oil (Bt                                                                                                                                            | ntent (%) =<br>u/gal) =                                                                                                                                                 |                                                         | 0.65<br>149,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg. Ash Conto<br>HHV Oil (Btu/)<br>Operation Hour           | gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                               | Avg. Ash Co                                                                                                                                                           | ntent (%) =<br>u/gal) =                                                                                                                                                 |                                                         | 0.65                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/)                                               | gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E1 410010                                                                                                                                                                                                                                                           | 149,000<br>8,760                                                                |                                                                                               | Avg. Ash Co<br>HHV Oil (Bt                                                                                                                                            | ntent (%) =<br>u/gal) =                                                                                                                                                 |                                                         | 0.65<br>149,000<br>8,760                                                           | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HHV Oil (Btu/)                                               | gal) =<br>5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     | 149,000                                                                         | NS.                                                                                           | Avg. Ash Co<br>HHV Oil (Bt                                                                                                                                            | ntent (%) =<br>u/gal) =<br>ours =                                                                                                                                       |                                                         | 0.65<br>149,000<br>8,760<br>Unit 5                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/)                                               | gal) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMISSIO<br>Units of                                                                                                                                                                                                                                                 | 149,000<br>8,760                                                                | NS                                                                                            | Avg. Ash Co<br>HHV Oil (Bt                                                                                                                                            | ntent (%) =<br>u/gal) =                                                                                                                                                 | PTE                                                     | 0.65<br>149,000<br>8,760                                                           | PTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HHV Oil (Btu/)<br>Operation Hour                             | gal) =<br>s =<br>Source of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units of                                                                                                                                                                                                                                                            | 149,000<br>8,760<br>N CALCULATIO                                                |                                                                                               | Avg. Ash Coi<br>HHV Oil (Bu<br>Operation Ho                                                                                                                           | ntent (%) =<br>u/gal) =<br>purs =                                                                                                                                       |                                                         | 0.65<br>149,000<br>8,760<br>Unit 5                                                 | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HHV Oil (Btu/)                                               | gal) =<br>5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     | 149,000<br>8,760<br>N CALCULATIO                                                | NS<br>sion Factor                                                                             | Avg. Ash Coi<br>HHV Oil (Bu<br>Operation Ho                                                                                                                           | ntent (%) =<br>u/gal) =<br>ours =                                                                                                                                       | PTE                                                     | 0.65<br>149,000<br>8,760<br>Unit 5                                                 | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HHV Oil (Btu/)<br>Operation Hour                             | sal) = s = Source of Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units of<br>Emission                                                                                                                                                                                                                                                | 149,000<br>8,760<br>N CALCULATIO1<br>Emis                                       | sion Factor                                                                                   | Avg. Ash Co<br>HHV Oil (Bt<br>Operation Ho                                                                                                                            | ntent (%) = u/gal) = urs =  Actual  Emissions                                                                                                                           | 100% Coal                                               | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol                   | Coal<br>Alcoh<br>Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHV Oil (Btu/) Operation House Pollutant                     | sal) = s = Source of Emission Factor/CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units of  Emission  Factor                                                                                                                                                                                                                                          | 149,000<br>8,760<br>N CALCULATION<br>Emis                                       |                                                                                               | Avg. Ash Coi<br>HHV Oil (Bu<br>Operation Ho                                                                                                                           | ntent (%) = u/gal) = u/gal) = urs =  Actual Emissions (tpy)                                                                                                             | 100% Coal                                               | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and                              | Coal<br>Alcoh<br>Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHV Oil (Btu/) Operation House Pollutant                     | sal) = 5 =  Source of Emission Factor/CEM AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units of  Emission  Factor  lb/ton                                                                                                                                                                                                                                  | 149,000<br>8,760<br>N CALCULATIO1<br>Emis                                       | sion Factor                                                                                   | Avg. Ash Co<br>HHV Oil (Bt<br>Operation Ho                                                                                                                            | Actual Emissions (tpy) 987                                                                                                                                              | 100% Coal                                               | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol<br>(tpy)          | Coal<br>Alcoh<br>Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHV Oil (Btu/)<br>Operation Hour                             | Source of Emission Factor/CEM AP-42[1] AP-42[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units of  Emission  Factor  Ib/ton  Ib/10^3 gal                                                                                                                                                                                                                     | 149,000<br>8,760<br>N CALCULATION<br>Emis                                       | sion Factor                                                                                   | Avg. Ash Coi<br>HHV Oil (Bu<br>Operation Ho                                                                                                                           | Actual  Emissions  (tpy)  987  11.90                                                                                                                                    | 100% Coal                                               | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol                   | Coal<br>Alcoh<br>Waste<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/) Operation House Pollutant                     | sal) = 5 =  Source of Emission Factor/CEM AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units of  Emission  Factor  lb/ton                                                                                                                                                                                                                                  | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4                        | Alcohol<br>21                                                                                 | Avg. Ash Cor<br>HHV Oil (Bu<br>Operation Ho<br>s<br>Waste Oil                                                                                                         | Actual  Emissions  (tpy)  987  11.90  0.30                                                                                                                              | 100% Coal                                               | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol<br>(tpy)          | Coal<br>Alcoh<br>Waste<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/) Operation House Pollutant                     | Source of Emission Factor/CEM AP-42[1] AP-42[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units of  Emission  Factor  Ib/ton  Ib/10^3 gal                                                                                                                                                                                                                     | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4                        | Alcohol<br>21                                                                                 | Avg. Ash Coi<br>HHV Oil (Bu<br>Operation Ho                                                                                                                           | Actual Emissions (tpy) 987 11.90 0.30 999                                                                                                                               | 100% Coal                                               | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol<br>(tpy)          | Coal<br>Alcoh<br>Waste<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/ <sub>1</sub> )<br>Operation Hour<br>Pollutant  | Source of   Emission   Factor/CEM   AP-42[1]   AP-42[9]   AP-42(3)   CEM(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units of  Emission  Factor  ib/ton  lb/10^3 gal  lb/10^3 gal                                                                                                                                                                                                        | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4                        | Alcohol<br>21                                                                                 | Avg. Ash Cor<br>HHV Oil (Bu<br>Operation Ho<br>s<br>Waste Oil                                                                                                         | Actual  Emissions (tpy) 987 11.90 0.30 999 707.08                                                                                                                       | 100% Coal<br>(tpy)<br>1,993                             | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol<br>(tpy)          | Coal<br>Alcoh<br>Waste<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/) Operation House Pollutant                     | Source of  <br>  Emission  <br>  Factor/CEM  <br>  AP-42[1]  <br>  AP-42[9]  <br>  AP-42(3)  <br>  CEM(5)  <br>  AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor ib/ton lb/10^3 gal lb/10^3 gal NA lb/ton                                                                                                                                                                                                   | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4                        | Alcohol 21 tal Calcula                                                                        | Avg. Ash Cor<br>HHV Oil (Btr<br>Operation Ho<br>s<br>Waste Oil                                                                                                        | Actual  Emissions  (tpy) 987 11.90 0.30 999 707.08 58.73                                                                                                                | 100% Coal                                               | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA                   | Coal<br>Alcoh<br>Waste<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/ <sub>1</sub> )<br>Operation Hour<br>Pollutant  | Source of  <br>  Emission  <br>  Factor/CEM  <br>  AP-42[1]  <br>  AP-42[3]  <br>  CEM(5)  <br>  AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor Ib/ton Ib/10/3 gal Ib/10/3 gal NA Ib/ton Ib/10/3 gal                                                                                                                                                                                       | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4                        | Alcohol 21 tal Calcula                                                                        | Avg. Ash Co. HHV Oil (Bh Operation Ho  s  Waste Oil  19.0  ted this sheet: NA                                                                                         | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04                                                                                                             | 100% Coal<br>(tpy)<br>1,993                             | 0.65<br>149,000<br>8,760<br>Unit 5<br>PTE<br>Coal and<br>Alcohol<br>(tpy)<br>1,993 | Coal<br>Alcoh<br>Waste<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HHV Oil (Btu/ <sub>1</sub> )<br>Operation Hour<br>Pollutant  | Source of  <br>  Emission  <br>  Factor/CEM  <br>  AP-42[1]  <br>  AP-42[9]  <br>  AP-42(3)  <br>  CEM(5)  <br>  AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor ib/ton lb/10^3 gal lb/10^3 gal NA lb/ton                                                                                                                                                                                                   | 149,000 8,760 N CALCULATION Emis Coal 8,4 To NA 0,50                            | Alcohol 21 tal Calcula NA 3.6                                                                 | Avg. Ash Co. HHV Oil (Bti Operation Ho  Waste Oil  19 0  ted this sheet: NA  5.0                                                                                      | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08                                                                                                        | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA                   | Coal<br>Alcohe<br>Waste (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HHV Oil (Btu/) Operation Hous  Pollutant  NOx                | Source of<br>  Emission<br>  Factor/CEM<br>  AP-42[1]<br>  AP-42[3]<br>  CEM(5)<br>  AP-42[1]<br>  AP-42[9]<br>  AP-42[3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor Ib/ton Ib/10^3 gal Ib/10^3 gal NA Ib/ton Ib/10^3 gal                                                                                                                                                                                       | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4<br>To<br>NA<br>0.50    | Alcohol 21 tal Calcula NA 3.6                                                                 | Avg. Ash Co. HHV Oil (Bh Operation Ho  s  Waste Oil  19.0  ted this sheet: NA                                                                                         | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61                                                                                                     | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA                   | Coal<br>Alcohe<br>Waste (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HHV Oil (Btu/ <sub>1</sub> )<br>Operation Hour<br>Pollutant  | Source of  <br>  Emission  <br>  Factor/CEM  <br>  AP-42[1]  <br>  AP-42[3]  <br>  CEM(5)  <br>  AP-42[1]  <br>  AP-42[3]  <br>  AP-42[4]  <br>  AP-42[4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor Ib/ton Ib/10/3 gal Ib/10/3 gal NA Ib/ton Ib/10/3 gal Ib/10/3 gal                                                                                                                                                                           | 149,000 8,760 N CALCULATION Emis Coal 8,4 To NA 0,50                            | Alcohol 21 tal Calcula NA 3.6                                                                 | Avg. Ash Co. HHV Oil (Bti Operation Ho  Waste Oil  19 0  ted this sheet: NA  5.0                                                                                      | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08                                                                                                        | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10              | Coal<br>Alcohe<br>Waste (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HHV Oil (Btu/) Operation Hous  Pollutant  NOx                | Source of<br>  Emission<br>  Factor/CEM<br>  AP-42[1]<br>  AP-42[3]<br>  CEM(5)<br>  AP-42[1]<br>  AP-42[9]<br>  AP-42[3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor Ib/ton Ib/10^3 gal Ib/10^3 gal NA Ib/ton Ib/10^3 gal                                                                                                                                                                                       | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4<br>To<br>NA<br>0.50    | Alcohol 21 tal Calcula NA 3.6                                                                 | Avg. Ash Co. HHV Oil (Bti Operation Ho  Waste Oil  19 0  ted this sheet: NA  5.0                                                                                      | Actual  Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05                                                                                               | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA                   | Coal<br>Alcoh<br>Waste<br>(tpy)<br>1,990<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HHV Oil (Btu/) Operation Hous  Pollutant  NOx                | Jal) = 5 s = Source of Emission Factor/CEM AP-42[1] AP-42[9] AP-42[1] AP-42[9] AP-42(3) AP-42[1] AP-42[1] AP-42[1] AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units of Emission Factor Ib/ton Ib/10^3 gal Ib/10^3 gal NA Ib/ton Ib/10^3 gal Ib/10^3 gal                                                                                                                                                                           | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4<br>To<br>NA<br>0.50    | Alcohol 21 tal Calcula NA 3.6 tal Calcula                                                     | Avg. Ash Co<br>HHV Oil (Bn<br>Operation He<br>s<br>Waste Oil<br>19.0<br>ted this sheet:<br>NA<br>5.0<br>ted this sheet:                                               | Actual Emissions (tpy) 987 11.90 999 707.08 58.73 2.04 0.08 61 7.05                                                                                                     | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10              | Coal<br>Alcohol<br>Waste (tpy)<br>1,992<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HHV Oil (Btu/) Operation Hous  Pollutant  NOx                | Source of  <br>  Emission  <br>  Factor/CEM  <br>  AP-42[1]  <br>  AP-42[3]  <br>  CEM(5)  <br>  AP-42[1]  <br>  AP-42[3]  <br>  AP-42[4]  <br>  AP-42[4]  <br>  AP-42[1]  <br>  AP-42[1]  <br>  AP-42[1]  <br>  AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor ib/ton ib/ton2 gal lb/10°3 gal NA lb/ton lb/10°3 gal lb/10°3 gal lb/ton2 lb/10°3 gal                                                                                                                                                       | 149,000<br>8,760<br>N CALCULATION<br>Emis<br>Coal<br>8.4<br>To<br>NA<br>0.50    | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4                                                 | Avg. Ash Co-HHV Oil (Bt Operation He Operation He Operation He Operation He Naste Oil 19.0 (ed this sheet: NA S.0 (ed this sheet: 1.00                                | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.22 7.3 8.22                                                                                  | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10               | Coal<br>Alcohol<br>Waste (tpy)<br>1,992<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HHV Oil (Blu/, Operation House Pollutant NOx                 | Jal) = 5 = Source of Emission Factor/CEM AP-42[1] AP-42[9] AP-42[1] AP-42[9] AP-42[0] AP-42[0 | Units of Emission Factor Ib/ton Ib/10°3 gal Ib/10°3 gal NA Ib/ton Ib/10°3 gal Ib/10°3 gal Ib/10°3 gal                                                                                                                                                               | 149,000 8,760 N CALCULATION  Emis  Coal 8,4  To NA  0.50  To 0.06               | Alcohol 21 tal Calcula NA 3.6 tal Calcula                                                     | Avg. Ash Co-HIVO Oil (Brit)  Waste Oil  19.0  ted this sheet:  NA  5.0  ted this sheet:                                                                               | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 0.02 0.30 0.30 0.30 0.30 0.30 0.30 0.3                                                                           | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10              | Coal<br>Alcohe<br>Waste (tpy)<br>1,992<br>NA<br>103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HHV Oil (Blu/, Operation House Pollutant NOx                 | Source of  <br>  Emission  <br>  Factor/CEM  <br>  AP-42[1]  <br>  AP-42[3]  <br>  CEM(5)  <br>  AP-42[1]  <br>  AP-42[3]  <br>  AP-42[4]  <br>  AP-42[4]  <br>  AP-42[1]  <br>  AP-42[1]  <br>  AP-42[1]  <br>  AP-42[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units of Emission Factor ib/ton ib/ton2 gal lb/10°3 gal NA lb/ton lb/10°3 gal lb/10°3 gal lb/ton2 lb/10°3 gal                                                                                                                                                       | 149,000 8,760 N CALCULATION  Emis  Coal 8.4  To NA  0.50  To 0.06               | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula                                     | Avg. Ash Co-HHV Oil (Br. Operation Ho  Waste Oil  19.0 ted this sheet: NA  5.0 ted this sheet: 1.00 ted this sheet:                                                   | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.23 0.22 7.3 8.22 0.00 0.00                                                                   | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10               | Coal<br>Alcohe<br>Waste (tpy)<br>1,992<br>NA<br>103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HHV Oil (Blu/, Operation House Pollutant NOx CO              | Source of Emission   Factor/CEM   AP-42[1]   AP-42[9]   AP-42[9]   AP-42[1]   AP-42[9]   AP-42[8]   | Units of Emission Factor Ib/ton Ib/10°3 gai                                                                                                 | 149,000 8,760  N CALCULATION  Emis  Coal 8.4  To NA 0.50  To 70.00              | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula                                     | Avg. Ash Co-HIVO Oil (Brit)  Waste Oil  19.0  ted this sheet:  NA  5.0  ted this sheet:                                                                               | Actual  Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.23 0.00 0.00 8.2                                                                            | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10               | Coal<br>Alcohe<br>Waste (tpy)<br>1,992<br>NA<br>103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HHV Oil (Blu/, Operation House Pollutant NOx                 | Jab = 5 s = Source of Emission Factor/CEM AP-42[1] AP-42[9] AP-42[1] AP-42[1] AP-42[1] AP-42[3] AP-42[3] AP-42[3] AP-42[3] AP-42[4] AP-42[4] AP-42[8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units of Emission Factor Ib/ton Ib/10/3 gal                                                                         | 149,000 8,760 N CALCULATION  Emis  Coal 8.4  To NA  0.50  To 0.06               | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula                                     | Avg. Ash Co-HHV Oil (Br. Operation Ho  Waste Oil  19.0 ted this sheet: NA  5.0 ted this sheet: 1.00 ted this sheet:                                                   | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.23 0.02 7.3 8.22 0.00 8.21 1.89                                                              | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA 103.10  9.50      | Coal<br>Alcohe<br>Waste (tpy)<br>1,992<br>NA<br>103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HHV Oil (Blu/, Operation House Pollutant NOx CO              | Jab = 5 s = Source of Emission Factor/CEM AP-42[1] AP-42[3] AP-42[3] AP-42[9] AP-42[9] AP-42[9] AP-42[9] AP-42[8] AP-42[8] AP-42[8] AP-42[8] AP-42[8] AP-42[8] AP-42[9] AP-42[8] AP-42[9] AP-42[8] AP-42[9] AP-42[8] AP-42[8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units of Emission Factor Ib/ton Ib/10°3 gal                                                                         | 149,000 8,760  N CALCULATION  Emis  Coal 8.4  To NA 0.50  To 70.00              | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula                                     | Avg. Ash Co-HHV Oil (Br. Operation Ho  Waste Oil  19.0 ted this sheet: NA  5.0 ted this sheet: 1.00 ted this sheet:                                                   | Actual  Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.23 0.00 0.00 8.2                                                                            | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10               | Coal Alcoho Waste (tpy) 1,992 NA 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHV Oil (Blu/, Operation House Pollutant NOx CO              | Jab = 5 s = Source of Emission Factor/CEM AP-42[1] AP-42[9] AP-42[1] AP-42[1] AP-42[1] AP-42[3] AP-42[3] AP-42[3] AP-42[3] AP-42[4] AP-42[4] AP-42[8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units of Emission Factor Ib/ton Ib/10/3 gal                                                                         | 149,000 8,760  N CALCULATION  Emis  Coal 8.4  To NA 0.50  To 0.06  To 70.00  To | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula 0.900 tal Calcula                   | Avg. Ash Co-HHV Oil (Bt-Operation He)  Waste Oil  19.0  ted this sheet:  NA  1.00  ted this sheet:  41.60  ted this sheet:                                            | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.20 7.3 8.22 0.00 0.00 8.2                                                                    | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA 103.10  9.50      | Coal Alcoho Waste (tpy) 1,992 NA 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHV Oil (Blu/, Operation House Pollutant NOx CO              | Jab = 5 s = Source of Emission Factor/CEM AP-42[1] AP-42[9] AP-42[1] AP-42[9] AP-42[3] AP-42[3] AP-42[3] AP-42[4] AP-42[8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units of Emission Factor Ib/ton Ib/10/3 gal                                                                                                 | 149,000 8,760 N CALCULATION  Emis  Coal 8,4  To NA  0.50  To 70.00              | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula 0.000 tal Calcula                   | Avg. Ash Co-HIVO Oil (Br. HIVO Oil (Br. HIVO Oil (Br. HIVO Oil Collaboration Ho.)  Waste Oil  19.0 ted this sheet: NA  5.0 ted this sheet: 41.60 ted this sheet: 33.2 | Actual  Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.23 0.02 7.3 8.22 0.00 0.00 8.2 1.89 0.00 1.89                                               | 100% Coal<br>(tpy)<br>1,993                             | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10 9.50 285.00   | Coal Alcoho Waste (tpy) 1,992 NA 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HHV Oil (Blu/) Operation Hour  Pollutant  NOx  CO  NMTOC  PM | Source of Emission   Factor/CEM   AP-42[1]   AP-42[9]   AP-42[8]   | Units of Emission Factor Ib/lon Ib/lon3 gal | 149,000 8,760  N CALCULATION  Emis  Coal 8.4  To NA 0.50  To 0.06  To 70.00  To | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula 0.900 tal Calcula                   | Avg. Ash Co-HHV Oit (Br. Operation He  Waste Oil  19 0 ted this sheet: NA  1.00 ted this sheet: 41.60 ted this sheet: 33.2 ted this sheet:                            | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.22 7.3 8.22 0.00 0.00 8.2 1.890 0.00 0.00 1.90 1.850                                         | 100% Coal<br>(tpy)<br>1,993<br>103.10<br>9.50<br>285.00 | 0.65 149,000 8,760  Unit 5  PTE Coal and Alcohol (tpy) 1,993  NA 103.10  9.50      | Coal Alcohol A |
| HHV Oil (Blu/) Operation Hour  Pollutant  NOx  CO  NMTOC  PM | Jab = 5 s = Source of Emission Factor/CEM AP-42[1] AP-42[9] AP-42[1] AP-42[9] AP-42[3] AP-42[3] AP-42[3] AP-42[4] AP-42[8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units of Emission Factor Ib/ton Ib/10/3 gal                                                                                                 | 149,000 8,760  N CALCULATION  Emis  Coal 8,4  To NA 0.50  To 70.00  To 16.10    | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula 0.600 tal Calcula 0.600 tal Calcula | Avg. Ash Co-HIVO Oil (Bru)  Waste Oil  19.0 ted this sheet: NA  5.0 ted this sheet: 41.60 ted this sheet: 33.2 ted this sheet:                                        | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.23 0.02 7.3 8.22 0.00 0.00 8.2 1.89 0.00 1.850 0.00 1.850 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 100% Coal<br>(tpy)<br>1,993<br>103.10<br>9.50<br>285.00 | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10 9.50 285.00   | Coal Alcohola Maste (199) 1,993 NA 103.1 9,500 285.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HHV Oil (Blu/) Operation Hour  Pollutant  NOx  CO  NMTOC  PM | Source of Emission   Factor/CEM   AP-42[1]   AP-42[9]   AP-42[8]   | Units of Emission Factor Ib/lon Ib/lon3 gal | 149,000 8,760  N CALCULATION  Emis  Coal 8,4  To NA 0.50  To 70.00  To 16.10    | Alcohol 21 tal Calcula NA 3.6 tal Calcula 0.4 tal Calcula 0.600 tal Calcula 0.600 tal Calcula | Avg. Ash Co-HHV Oit (Br. Operation He  Waste Oil  19 0 ted this sheet: NA  1.00 ted this sheet: 41.60 ted this sheet: 33.2 ted this sheet:                            | Actual Emissions (tpy) 987 11.90 0.30 999 707.08 58.73 2.04 0.08 61 7.05 0.22 7.3 8.22 0.00 0.00 8.2 1.890 0.00 0.00 1.90 1.850                                         | 100% Coal<br>(tpy)<br>1,993<br>103.10<br>9.50<br>285.00 | 0.65 149,000 8,760 Unit 5 PTE Coal and Alcohol (tpy) 1,993 NA 103.10 9.50 285.00   | Coal<br>Alcohe<br>Waste (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**UDS Refinery (previously Colorado Refining Company)** 

#### **COLORADO REFINING COMPANY**

A SUBSIDIARY OF TOTAL PETROLEUM, INC.

5800 BRIGHTON BOULEVARD COMMERCE CITY, COLORADO 80022 TELEPHONE 303 295-4500

# CERTIFIED MAIL RETURN RECEIPT REQUESTED HAND DELIVERED

January 17, 2000

Mr. Long Nguyen Air Pollution Control Division Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South Denver, Colorado 80246-1530

RE: Emission Calculation – PTE for NOx, SOx, PM10

Dear Mr. Nguyen:

Enclosed please find Colorado Refining Company's (CRC) potential to emit (PTE) calculations for the sources that you had requested.

If you require more information or have any questions or comments, please call me at (303) 227-2414.

Sincerely,

Enclosure

Mark Suyama
Environmental Engineer

RECEIVED

JAN 2 3 2001

STATIONARY SOURCES PROGRAM

#### **CRUDE & VACUUM HEATERS**

Potential To Emit

**Design Ratings** 

88 MMBTU/hr Crude Heater Vacuum Heater 31 MMBTU/hr

Vendor

Vendor

**Emission Factors** 

Crude Heater

NOx 85 lb/MMscf

120 ppm/H2S SO<sub>2</sub>

Fuel Gas Maximum

AP-42 (Table 1.4-3 Small Industrial Boilers - Low NOx Burners) PM10 13.7 lb/MMscf

Vacuum Heater

0.075 lb/MMBTU NOx

> Fuel Gas Maximum 120 ppm/H2S

AP-42 (Table 1.4-3 Small Industrial Boilers - Low NOx Burners) 13.7 lb/MMscf PM10

**Emission Calculations** 

Crude Heater

SO<sub>2</sub>

NOx: (88 MMBTU/hr)(8760 hr/yr)(10<sup>6</sup> BTU/MMBTU)(Scf/1000BTU)(MMscf/106 Scf)(85 lb/MMscf)(Ton/2000 lb) = 32.8 TPY  $SO_2$ : (88 MMBTU/hr)(MMscf/450 MMBTU)(120 ft3/MMscf)(lb mol/379 ft3)(64 lb  $SO_2$ /lb mol)(8760 hr/yr)(Ton/2000 lb) = 17.3 TPY PM10:  $(88 \text{ MMBTU/hr})(8760 \text{ hr/yr})(10^6 \text{ BTU/MMBTU})(\text{Scf}/1000 \text{ BTU})(\text{MMscf}/106 \text{ Scf})(13.7 \text{ lb/MMscf})(\text{Ton/2000lb}) = 5.2 \text{ TPY}$ 

Vacuum Heater

NOx: (31 MMBTU/hr)(0.075 lb/MMBTU)(Ton/2000 lb)(8760 hr/yr) = 10.1 TPY

 $SO_2$ : (31 MMBTU/hr)(MMscf/450 MMBTU)(120 ft3/MMscf)(lb mol/379 ft3)(64 lb  $SO_2$ /lb mol)(8760 hr/yr)(Ton/2000 lb) = 6.1 TPY PM10: (31 MMBTU/hr)(8760 hr/yr)(10<sup>6</sup> BTU/MMBTU)(Scf/1000 BTU)(MMscf/106 Scf)(13.7 lb/MMscf)(Ton/2000lb) = 1.8 TPY

NOX 3 48.9 / SOX 3 17.3 +61 3 23.4/

PM, 0 -) 7.0/

#### **BLACK OIL HEATER**

Potential To Emit

Design Ratings

BLACK OIL HEATER

8.1 MMBTU/hr

#### **Emission Factors**

Black Oil Heater

100 lb MMscf NOx SO2 120 ppm/H2S

AP-42 (Table 1.4-2) Fuel Gas Maximum

12 lb/MMscf PM10

AP-42 (Table 1.4-1)

#### **Emission Calculations**

Black Oil Heater
NOx: (8.1 MMBTU/hr)(0.11 lb/MMBTU)(Ton/2000 lb)(8760 hr/yr) = 3.8 TPY
SO2: (8.1 MMBTU/hr)(MMscf/450 MMBTU)(120 ft3/MMscf)(lb mol/379 ft3)(64 lb SO2/lb mol)(8760 hr/yr)(Ton/2000 lb) = 1.6 TPY
PM10: (8.1 MMBTU/hr)(0.005 lb/MMscf)(Ton/2000lb)(8760 hr/yr) = 0.2 TPY

10000

#### **REFORMER HEATERS**

Potential To Emit

**Design Ratings** 

Reformer Heaters

161 MMBTU/hr

**Emission Factors** 

Reformer Heaters

0.075 lb/MMBTU NOx

Source Test Data

SO2

120 ppm/H2S

Fuel Gas Maximum

PM10

13.7 lb/MMscf

AP-42 (Table 1.4-3 Small Industrial Boilers - Low NOx Burners (6.2 + 7.5))

#### **Emission Calculations**

Reformer Heaters

Reformer Heaters
NOx: (161MMBTU/hr)(0.075 lb/MMBTU)(Ton/2000 lb)(8760 hr/yr) = 52.8 TPY
SO2: (161MMBTU/hr)(MMscf/450 MMBTU)(120 ft3/MMscf)(lbmol/379 ft3)(64 lb SO2/lbmol)(8760 hr/yr)(Ton/2000 lb) = 31.8 TPY
PM10: (161 MMBTU/hr)(8760 hr/yr)(10<sup>6</sup> BTU/MMBTU)(Scf/1000 BTU)(MMscf/10<sup>6</sup> Scf)(13.7 lb/MMscf)(Ton/2000lb) = 9.7 TPY

#### **UTILITIES - BOILERS**

Potential To Emit

**Design Ratings** 

225 MMBTU/hr Utilities

**Emission Factors** 

Utilities

140 lb/10<sup>6</sup> ft3 AP-42 (Table 1.4-2 Small Industrial Boilers) NOx

Fuel Gas Maximum SO2 120 ppm/H2S

AP-42 (Table 1.4-3 Small Industrial Boilers - Low NOx Burners (6.2 + 7.5)) 13.7 lb/MMscf PM10

#### **Emission Calculations**

Utilities

NOx: (225 MMBTU/hr)(0.075 lb/MMBTU)(Ton/2000 lb)(8760 hr/yr) = 73.9 TPY

SO2: (225MMBTU/hr)(MMscf/1000 MMBTU)(120 ft3/MMscf)(lbmol/379 ft3)(64 lb SO2/lbmol)(8760 hr/yr)(Ton/2000 lb) = 19.9 TP PM10: (225 MMBTU/hr)(8760 hr/yr)(10<sup>6</sup> BTU/MMBTU)(Scf/1000 BTU)(MMscf/10<sup>6</sup> Scf)(13.7 lb/MMscf)(Ton/2000lb) = 13.5 TPY

#### REFINERY FLARE

Potential To Emit

**Design Ratings** 

131,282 MMBTU/yr

Refinery Flare (Maximum Refinery Throughput ~35,000 bbl)

#### **Emission Factors**

Refinery Flare

0.068 lb/MMBTU NOx

AP-42 (Table 13.5-1 Emission Factors for Flare Operations)

SO2

26.9 lb/103 bbl

137 lb/MMBTU PM10

AP-42 (Table 13.5-1 Emission Factors for Flare Operations)

#### **Emission Calculations**

Refinery Flare

NOX: (133,282 MMBTU/yr)(0.068 lb/MMBTU)(Ton/2000 lb) = 4.6 TPY SO2: (26.9 lb SO2/1000 bbl)(35,000 bbl/day)(365 day/yr)(Ton/2000 lb) = 172 TPY PM10:  $(137 \text{ug/L})(\text{g/10}^6 \text{ ug})(\text{lb/454 g})(28.32 \text{ g/ft}^3)(212.5 \text{ MMft}^3)(\text{Ton/2000 lb}) = 0.9 \text{ TPY}$ 

#### FLUID CATALYTIC CRACKING UNIT

Potential To Emit

Design Ratings

75 MMBTU/hr FCCU Preheater (Maximum Refinery Throughput ~35,000 bbl)

#### **Emission Factors**

FCCU PH

AP-42 (Table 1.4-2 Emission Factors for Sox, Nox, CO from Natural Gas Combustion) 140 lb/MMscf NOx

120 PPM Max. H2S in Fuel Gas SO2

AP-42 (Table 1.4-2 Emission Factors for Sox, Nox, CO from Natural Gas Combustion) PM10 13.7 lb/MMscf

#### **Emission Calculations**

FCCU PH

NOx: (75 MMBTU/hr)(MMscf/450 MMBTU)(8760 hr/yr)(140 lb/MMscf)(Ton/2000 lb) = 102.2 TPY

SO2: (1460 MMscf/yr)(120 ft3 H2S/MMscf)(34 lb H2S/lb moi)(lb moi/379.5 ft3)(64 lb SO2/34lb H2S)(Ton/2000 lb) = 14.77 TPY PM10: (75 MMBTU/hr)(MMscf/450 MMBTU)(8760 hr/yr)(13.7 lb/MMscf)(Ton/2000 lb) = 10.0 TPY

#### FLUID CATALYTIC CRACKING UNIT

Potential To Emit

#### Design Ratings

FCCU REGEN - Coke Make

5788.7 lbs/hr 50,709,012 lbs/yr

#### **Emission Factors**

FCCU REGEN

NOx 2.41 lbs/1000 lbs Coke Make SO2 17.35 lb/1000 lbs Coke Make

PM10 7.88 lbs/1000 lbs Coke Make

#### **Emission Calculations**

FCCU REGEN

NOx: (50,709,012 lbs/yr)(2.41 lbs/1000 lb)(Ton/2000 lb) = 61 TPY SOx: (50,709,012 lbs/yr)(17.35 lbs/1000 lb)(Ton/2000 lb) = 440 TPY PM10: (50,709,012 lbs/yr)(7.88 lbs/1000 lb)(Ton/2000 lb) = 200 TPY

## SULFUR RECOVERY UNIT INCINERATOR

Potential To Emit

## Design Ratings

Sulfur Recovery Unit 6 Long Tons per Day
21,000 MMBTU/yr Consumption Limit
2.4 MMBTU/yr Maximum Gas Input to the Incinerator

### **Emission Factors**

Sulfur Recovery Unit

NOx 100 lb/MMscf 120 ppm/H2S AP-42 (Table 1.4-2 Commercial Boilers)

SO2

Fuel Gas Maximum

PM10 12.0 lb/MMscf AP-42 (Table 1.4-1 Commercial Boilers (4.5 + 7.5))

## **Emission Calculations**

Sulfur Recovery Unit

The SO<sub>2</sub> PTE is a combination of the SO<sub>2</sub> created by converting the tail gas H<sub>2</sub>S to SO<sub>2</sub> in the incinerator and the SO<sub>2</sub> created by combustion of the incinerator pilot feed.

#### Tail Gas

The maximum amount of sulfur leaving the Claus unit is designed to be constant

The amount of sulfur leaving the Claus unit is designed to be 0.42 long tons per day

6 long tons/day x (1-0.93) = 0.42 long tons/day S

Using a conservative assumption of 100% conversion of H<sub>2</sub>S to SO<sub>2</sub>, this leads to:

0.42 long tons/day x 5 short tons/4.464 long tons x 2000 lb/ton x lbmole/32 lb S x lbmole  $H_2S$ /lbmole S = 29.4 lbmole  $H_2S$ /day

29.4 lbmole  $H_2S$ /day x 365 days/yr x 64 lb  $SO_2$ /lbmole x lbmole  $SO_2$ /lbmole  $H_2S$  x ton/2000 lb = 343.4 ton  $SO_2$ /yr -- out of the SRU tail gas incinerator due to tail gas

#### Pilot Feed

Some  $SO_2$  will also be formed from combustion of the pilot gas fed to the SRU tail gas incinerator.

Btu Rating of SRU tail gas incinerator = 1.95 mmbtu/hr Refinery gas heat content = 400 Btu/scf Potential fuel feed to the SRU incinerator:  $120 \text{ ppmv } H_2S$  in the pilot fuel at a maximum

1.95 mmbtu/hr x mmcf/400 mmbtu x 8760 hr/yr = 42.71 mmcf/yr

This conservatively assumes that the entire feed to the SRU incinerator is fuel gas rather than a mix of fuel gas and tail gas.

42.71 mmcf/yr pilot fuel x 120 ft3  $H_2S/mmcf$  x lbmole  $H_2S/379$  ft3 x lbmole  $SO_2$ /lbmole  $H_2S$  x 64 lb  $SO_2$ /lbmole x ton/2000 lb = 0.43 ton  $SO_2$ /yr -- From combustion of pilot fuel

80

Total SO<sub>2</sub>:  $343.4 + 0.43 = 343.83 \text{ ton SO}_2/\text{yr}$ 

# **LPG Loading/Unloading Flare**Potential To Emit

## Design Ratings

Loading of LPG 350,000,000 gal/yr Heat Input = 404,400 MMBTU/yr

### **Emission Factors**

LPG Loading/Unloading Flare

AP-42 (Table 13.5-1 Emission Factors for Flare Operations) NOx 0.068 lb/MMBTU

## **Emission Calculations**

LPG Loading/Unloading Flare

NOx: (404,400 MMBTU/yr)(0.068 lb/MMBTU)(Ton/2000 lb) = 13.75 TPY

### **Product Dock Loading**

Potential To Emit

### **Design Ratings**

Loading of Product 578,160,000 gal/yr Capture efficiency = 95%

#### **Emission Factors**

Product Dock Loading

AP-42 (Table 13.5-1 Emission Factors for Flare Operations) 0.068 lb/MMBTU NOx

## **Emission Calculations**

Product Dock Loading

 $L_L$ : (8.15 ib/1000 gal)(578,160,000 gal)(Ton/2000 lb) = 2356 TPY

Quantity Uncaptured: (2356 tpy)(0.01%) = 23.6 TPY
Quantity Flared: (2356-23.6)(0.95) = 2216
Heat Content Flared: (2216 TPY)(2000 lb/Ton)(19000 BTU/lb) = 84,208 MMBTU/yr

NOx: (84,208 MMBTU/yr)(0.068 lb/MMBTU)(Ton/2000 lb) = 2.9 TPY

PM: de minimus de minimus SOx:

## Appendix E.5 40CFR Part 60 NSPS Subpart D

TABLE 2 TO SUBPART CE—EMISSIONS LIMITS FOR SMALL HMIWI WHICH MEET THE CRITERIA UNDER § 60.33E(B)

| Pollutant          | Units (7 percent oxygen, dry basis)                                                                                                                                                                        | HMIWI emission<br>limits  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Particulate matter | Milligrams per dry standard cubic meter (grains per dry standard cubic foot).                                                                                                                              | 197 (0.086).              |
| Carbon monoxide    | Parts per million by volume                                                                                                                                                                                | 40.                       |
| Dioxins/furans     | nanograms per dry standard cubic meter total dioxins/furans (grains<br>per billion dry standard cubic feet) or nanograms per dry standard<br>cubic meter TEQ (grains per billion dry standard cubic feet). | 800 (350) or 15<br>(6.6). |
| Hydrogen chloride  | Parts per million by volume                                                                                                                                                                                | 3100.                     |
| Sulfur dioxide     | Parts per million by volume                                                                                                                                                                                | 55.                       |
| Nitrogen oxides    | Parts per million by volume                                                                                                                                                                                |                           |
| Lead               | Milligrams per dry standard cubic meter (grains per thousand dry standard cubic feet).                                                                                                                     |                           |
| Cadmium            | Milligrams per dry standard cubic meter (grains per thousand dry standard cubic feet).                                                                                                                     | 4 (1.7).                  |
| Mercury            | Milligrams per dry standard cubic meter (grains per thousands dry standard cubic feet).                                                                                                                    | 7.5 (3.3).                |

#### Subpart D—Standards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction is Commenced After August 17, 1971

## § 60.40 Applicability and designation of affected facility.

- (a) The affected facilities to which the provisions of this subpart apply
- (I) Each fossil-fuel-fired steam generating unit of more than 73 megawatts heat input rate (250 million Btu perhour).
- (2) Each fossil-fuel and wood-residuefired steam generating unit capable of firing fossil fuel at a heat input rate of more than 73 megawatts (250 million Btu per hour).
- (b) Any change to an existing fossilfuel-fired steam generating unit to accommodate the use of combustible materials, other than fossil fuels as defined in this subpart, shall not bring that unit under the applicability of this subpart.
- (c) Except as provided in paragraph (d) of this section, any facility under paragraph (a) of this section that commenced construction or modification after August 17, 1971, is subject to the requirements of this subpart.
- menced construction or modification after August 17, 1971, is subject to the requirements of this subpart.
  (d) The requirements of §§60.44 (a)(4), (a)(5), (b) and (d), and 60.45(f)(4)(vi) are applicable to lignite-fired steam generating units that commenced construction or modification after December 22, 1976.

(e) Any facility covered under subpart Da is not covered under this subpart.

[42 FR 37936, July 25, 1977, as amended at 43 FR 9278, Mar. 7, 1978; 44 FR 33612, June 17, 1979]

#### §60.41 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act, and in subpart A of this part.

(a) Fossil-fuel fired steam generating

- (a) Fossil-fuel fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of producing steam by heat transfer.
- (b) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat
- ing useful heat.
  (c) Coal refuse means waste-products of coal mining, cleaning, and coal preparation operations (e.g. culm, gob, etc.) containing coal, matrix material, clay, and other organic and inorganic material.
- (d) Fossil fuel and wood residue-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel and wood residue for the purpose of producing steam by heat transfer.
- (e) Wood residue means bark, sawdust, slabs, chips, shavings, mill trim, and other wood products derived from wood processing and forest management operations.

#### § 60.42

(f) Coal means all solid fuels classi-(i) Coal means an solid liters classified as anthracite, bituminous, sub-bituminous, or lignite by the American Society and Testing and Materials, Designation D388-77 (incorporated by reference—see §60.17).

[39 FR 20791, June 14, 1974, as amended at 40 FR 2803, Jan. 16, 1975; 41 FR 51398, Nov. 22, 1976; 43 FR 9278, Mar. 7, 1978; 48 FR 3736, Jan. 27, 1983]

## §60.42 Standard for particulate mat-

- (a) On and after the date on which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility any gases which: (1) Contain particulate matter in ex-
- cess of 43 nanograms per joule heat input (0.10 lb per million Btu) derived from fossil fuel or fossil fuel and wood
- (2) Exhibit greater than 20 percent opacity except for one six-minute period per hour of not more than 27 per-
- cent opacity.
  (b)(1) On or after December 28, 1979, no owner or operator shall cause to be discharged into the atmosphere from the Southwestern Public Service Company's Harrington Station #I, in Amarillo, TX, any gases which exhibit greater than 35% opacity, except that a maximum or 42% opacity shall be permitted for not more than 6 minutes in
- any hour.
  (2) Interstate Power Company shall (c) Interstate Fower Company Shan not cause to be discharged into the atmosphere from its Lansing Station Unit No. 4 in Lansing, IA, any gases which exhibit greater than 32% opacity, except that a maximum of 39% opacity shall be permitted for not more these interstation and house. than six minutes in any hour.

139 FR 20792, June 14, 1974, as amended at 41 FR 51398, Nov. 22, 1976; 42 FR 61537, Dec. 5, 1977; 44 FR 76787, Dec. 28, 1979; 45 FR 50077, May 29, 1980; 45 FR 47146, July 14, 1880; 46 FR 57498, Nov. 24, 1981; 61 FR 49976, Sept. 24, 1996]

#### § 60.43 Standard for sulfur dioxide.

(a) On and after the date on which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility any gases which contain sulfur dioxide in excess of:

- (1) 340 nanograms per joule heat input (0.80 lb per million Btu) derived from liquid fossil fuel or liquid fossil fuel and wood residue.
- (2) 520 nanograms per joule heat input (1.2 lb per million Btu) derived from solid fossil fuel or solid fossil fuel and wood residue, except as provided in paragraph (e) of this section. (b) When different fossil fuels are
- burned simultaneously in any combina-tion, the applicable standard (in ng/J) shall be determined by proration using the following formula:

 $PS_{SO2}=[y(340) + z(520)]/(y+z)$ 

- PS<sub>SO2</sub> is the prorated standard for sulfur dioxide when burning different fuels simultaneously, in nanograms per joule heat input derived from all fossil fuels fired or from all fossil fuels and wood residue fired,
- y is the percentage of total heat input de-rived from liquid fossil fuel, and z is the percentage of total heat input de-rived from solid fossil fuel.
- (c) Compliance shall be based on the total heat input from all fossil fuels burned, including gaseous fuels.

(d) [Reserved]

(e) Units 1 and 2 (as defined in appendix G) at the Newton Power Station dix G) at the Newton Power Station owned or operated by the Central Illinois Public Service Company will be in compliance with paragraph (a)(2) of this section if Unit 1 and Unit 2 individually comply with paragraph (a)(2) of this section or if the combined emission rate from Units 1 and 2 does not exceed 470 paragraphs per joule (11 b) exceed 470 nanograms per joule (1.1 lb per million Btu) combined heat input to Units 1 and 2.

[39 FR 20792, June 14, 1974, as amended at 41 FR 51398, Nov. 22, 1976; 52 FR 28954, Aug. 4,

## §60.44 Standard for nitrogen oxides.

(a) On and after the date on which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility any gases which contain nitrogen oxides, expressed as

- (1) 86 nanograms per joule heat input
- (1) 86 nanograms per joule heat input (0.20 lb per million Btu) derived from gaseous fossil fuel. (2) 129 nanograms per joule heat input (0.30 lb per million Btu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue.
- (3) 300 nanograms per joule heat input (0.70 lb per million Btu) derived from solid fossil fuel or solid fossil fuel and wood residue (except lignite or a solid fossil fuel containing 25 percent,
- solid lossif luciform of coal refuse).

  (4) 260 nanograms per joule heat input (0.60 lb per million Btu) derived from lignite or lignite and wood residue (except as provided under paragraph (a) (5) of this section).
- (5) 340 nanograms per joule heat input (0.80 lb per million Btu) derived from lignite which is mined in North Dakota, South Dakota, or Montana and which is burned in a cyclone-fired
- (b) Except as provided under paragraphs (c) and (d) of this section, when different fossil fuels are burned simultaneously in any combination, the applicable standard (in ng/J) is determined by proration using the following formula:

$$PS_{\text{NOx}} = \frac{w(260) + x(86) + y(130) + z(300)}{w + x + y + z}$$

where:

- where:

  PS<sub>NOx</sub>: is the prorated standard for nitrogen oxides when burning different fuels simultaneously, in nanograms per joule heat input derived from all fossil fuels fired or from all fossil fuels and wood resisted. idue fired:

- idue fired;
  w= is the percentage of total heat input derived from lignite;
  x= is the percentage of total heat input derived from gaseous fossil fuel;
  y= is the percentage of total heat input derived from liquid fossil fuel; and
  z= is the percentage of total heat input derived from solid fossil fuel (except lignite).
- (c) When a fossil fuel containing at least 25 percent, by weight, of coal refuse is burned in combination with gaseous, liquid, or other solid fossil fuel or wood residue, the standard for
- nitrogen oxides does not apply.

  (d) Cyclone-fired units which burn fuels containing at least 25 percent of lignite that is mined in North Dakota,

South Dakota, or Montana remain subject to paragraph (a)(5) of this section regardless of the types of fuel com-busted in combination with that lig-

[39 FR 20792, June 14, 1974, as amended at 41 FR 51398, Nov. 22, 1976; 43 FR 9278, Mar. 7, 1978; 51 FR 42797, Nov. 25, 1986]

#### §60.45 Emission and fuel monitoring.

- (a) Each owner or operator shall install, calibrate, maintain, and operate stati, calibrate, maintain, and operate continuous monitoring systems for measuring the opacity of emissions, sulfur dioxide emissions, nitrogen oxides emissions, and either oxygen or carbon dioxide except as provided in paragraph (b) of this section.
- (b) Certain of the continuous monitoring system requirements under paragraph (a) of this section do not apply to owners or operators under the following conditions:
- (1) For a fossil fuel-fired steam generator that burns only gaseous fossil fuel, continuous monitoring systems for measuring the opacity of emissions and sulfur dioxide emissions are not required.
- (2) For a fossil fuel-fired steam generator that does not use a flue gas desulfurization device, a continuous monitoring system for measuring sul-fur dioxide emissions is not required if the owner or operator monitors sulfur dioxide emissions by fuel sampling and analysis under paragraph (d) of this
- (3) Notwithstanding §60.13(b), installation of a continuous monitoring sys-tem for nitrogen oxides may be delayed until after the initial performance tests under §60.8 have been conducted. If the owner or operator demonstrates during the performance test that emisduring the performance test that emis-sions of nitrogen oxides are less than 70 percent of the applicable standards in \$60.44, a continuous monitoring system for measuring nitrogen oxides emis-sions is not required. If the initial performance test results show that nitro-gen oxide emissions are greater than 70 percent of the applicable standard, the owner or operator shall install a continuous monitoring system for nitro-gen oxides within one year after the date of the initial performance tests under §60.8 and comply with all other

applicable monitoring requirements under this part.
(4) If an owner or operator does not

- install any continuous monitoring sys-tems for sulfur oxides and nitrogen oxides, as provided under paragraphs (b)(1) and (b)(3) or paragraphs (b)(2) and (b)(3) of this section a continuous monitoring system for measuring either oxygen or carbon dioxide is not required.
- (c) For performance evaluations under §60.13(c) and calibration checks under §60.13(d), the following procedures shall be used:
- (1) Methods 6, 7, and 3B, as applicable, shall be used for the performance evaluations of sulfur dioxide and nitrogen oxides continuous monitoring sys tems. Acceptable alternative methods for Methods 6, 7, and 3B are given in §60.46(d).
- (2) Sulfur dioxide or nitric oxide, as applicable, shall be used for preparing calibration gas mixtures under Performance Specification 2 of appendix B to this part.
  (3) For affected facilities burning fos-
- (3) For ameter latinties burning ios-sil fuel(s), the span value for a continu-ous monitoring system measuring the opacity of emissions shall be 80, 90, or 100 percent and for a continuous monitoring system measuring sulfur oxides or nitrogen oxides the span value shall be determined as follows:

| ( F          |                                  |                                     |  |
|--------------|----------------------------------|-------------------------------------|--|
| Fossil fuel  | Span value for<br>sulfur dioxide | Span value for nitro-<br>gen oxides |  |
| Gas          | (1)                              | 500                                 |  |
| Liquid       | 1,000                            | 500                                 |  |
| Solid        | 1,500                            | 1000                                |  |
| Combinations | 1,000y+1,500z                    | 500(x+y)+1,000z                     |  |

1 Not applicable

where:

where.

\*\*x=the fraction of total heat input derived from gaseous fossil fuel, and y=the fraction of total heat input derived from the following forms of the fo

rfrom liquid fossil fuel, and z=the fraction of total heat input derived from solid fossil fuel.

- (4) All span values computed under paragraph (c)(3) of this section for burning combinations of fossil fuels shall be rounded to the nearest 500  $\,$ ppm.
- (5) For a fossil fuel-fired steam gener ator that simultaneously burns fossil fuel and nonfossil fuel, the span value of all continuous monitoring systems

shall be subject to the Administrator's approval.
(d) [Reserved]

- (e) For any continuous monitoring system installed under paragraph (a) of this section, the following conversion procedures shall be used to convert the continuous monitoring data into units of the applicable standards (ng/J, lb/million Btu):
- (1) When a continuous monitoring system for measuring oxygen is sesystem for measuring oxygen is se-lected, the measurement of the pollut-ant concentration and oxygen con-centration shall each be on a consistcentration shall each be on a consist-ent basis (wet or dry). Alternative pro-cedures approved by the Administrator shall be used when measurements are on a wet basis. When measurements are on a dry basis, the following conversion procedure shall be used:

 $E=CF[20.9/(20.9-percent O_2)]$ 

E, C, F, and  $\%O_2$  are determined under paragraph (f) of this section.

(2) When a continuous monitoring system for measuring carbon dioxide is selected, the measurement of the pollutant concentration and carbon dioxide concentration shall each be on a consistent basis (wet or dry) and the following conversion procedure shall be

used: E=CF<sub>c</sub> [100/percent CO<sub>2</sub>]

- E, C,  $F_c$  and  $\%CO_2$  are determined under paragraph (f) of this section.
- (f) The values used in the equations under paragraphs (e) (1) and (2) of this section are derived as follows:
- (1) E=pollutant emissions, ng/J (lb/ million Btu).
- (2) C=pollutant concentration, ng/dscm (lb/dscf), determined by multiplying the average concentration (ppm) for each one-hour period by 4.15x10<sup>4</sup> M ng/dscm per ppm (2.59x10<sup>-9</sup> M lb/dscf per ppm) where M=pollutant molecular weight, g/g-mole (lb/lb-mole). M=64.07 for sulfur dioxide and 46.01 for nitrogen oxides
- oxides. (3)  $\%O_2$ ,  $\%CO_2$ =oxygen or carbon dioxide volume (expressed as percent), determined with equipment specified under paragraph (a) of this section. (4) F, F<sub>c</sub>=a factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel

combusted (F), and a factor representing a ratio of the volume of carbon dioxide generated to the calorific value of the fuel combusted  $(F_{\rm c})$ , respectively. Values of F and  $F_{\rm c}$  are given as

tively. Values of F and  $F_c$  are given as follows:

(i) For anthracite coal as classified according to ASTM D388-77 (incorporated by reference—see \$60.17), F=2,723×10<sup>-17</sup> dscm/J (10,140 dscf/million Btu and  $F_c$ =0.532×10<sup>-17</sup> scm  $CO_z/J$  (1,980 scf  $CO_z/m$ illion Btu).

scf CO<sub>2</sub>/million Btu).

(ii) For subbituminous and bituminous coal as classified according to ASTM D388-77 (incorporated by reference—see  $\S60.17$ ), F= $2.637\times10^{-7}$  dscm/J ( $\S820$  dscf/million Btu) and F<sub>c</sub>= $0.486\times10^{-7}$  scm CO<sub>2</sub>/J (1.810 scf CO<sub>2</sub>/million Btu).

(iii) For liquid fossil fuels including

million Btu). (iii) For liquid fossil fuels including crude, residual, and distillate oils,  $F=2.476\times10^{-7}$  dscm/J (9,220 dscf/million Btu) and  $F_{c}=0.384\times10^{-7}$  scm  $CO_{c}/J$  (1,430 scf  $CO_{c}/m$ illion Btu). (iv) For gaseous fossil fuels,  $F=2.347\times10^{-7}$  dscm/J (8,740 dscf/million Btu).

Btu). For natural gas, propane, and butane fuels,  $F_c$ =0.279×10<sup>-7</sup> scm  $CO_c/J$ 

(1,040 scf  $CO_2$ /million Btu) for natural gas,  $0.322\times10^{-7}$  scm  $CO_2$ /J (1,200 scf  $CO_2$ /million Btu) for propane, and  $0.338\times10^{-7}$  scm  $CO_2$ /J (1,260 scf  $CO_2$ /million

0.338×10<sup>-7</sup> scm  $CO_2/J$  (1,260 scf  $CO_2$ /million Btu) for butane. (v) For bark F=2.589×10<sup>-7</sup> dscm/J (9.640 dscf/million Btu) and  $F_c$ =0.500×10<sup>-7</sup> scm  $CO_2/J$  (1.840 scf  $CO_2/J$  million Btu). For wood residue other than bark F=2.492×10<sup>-7</sup> dscm/J (9,280 dscf/million Btu) and  $F_c$ =0.494×10<sup>-7</sup> scm  $CO_2/J$  (1,680 scf  $CO_2/J$  million Btu)

(vi) For lignite coal as classified according to ASTM D388-77 (incorporated by reference—see §60.17), F=2.659x10-7 dscm/J (9,900 dscf/million Btu) and  $F_c$ =0.516×10<sup>-7</sup> scm CO<sub>2</sub>/J (1,920 scf CO<sub>2</sub>/ million Btu).

(5) The owner or operator may use the following equation to determine an F factor (dscm/J or dscf/million Btu) on a dry basis (if it is desired to calculate F on a wet basis, consult the Administrator) or  $F_c$  factor (scm  $CO_2/J$ , or scf  $CO_2/m$ illion Btu) on either basis in lieu of the F or  $F_c$  factors specified in paragraph (f)(4) of this section:

$$F = 10^{-6} \frac{\left[227.2 \text{ (pct. II)} + 95.5 \text{ (pct. C)} + 35.6 \text{ (pct. S)} + 8.7 \text{ (pct. N)} - 28.7 \text{ (pct. O)}\right]}{\text{GCV}}$$

$$F_c = \frac{2.0 \times 10^{-5} \text{ (pct. C)}}{\text{GCV} \text{ (SI units)}}$$

$$F = \frac{10^6 \left[3.64 (\%H) + 1.53 (\%C) + 0.57 (\%S) + 0.14 (\%N) - 0.46 (\%O)\right]}{\text{GCV} \text{ (English units)}}$$

$$F_c = \frac{20.0 (\%C)}{\text{GCV} \text{ (SI units)}}$$

$$F_c = \frac{321 \times 10^3 (\%C)}{\text{GCV} \text{ (English units)}}$$

(i) H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen (expressed as percent), respectively, as determined on the same basis as GCV by ultimate analysis of the fuel fired, using ASTM method D3178-74 or D3176 (solid fuels) or computed from results using ASTM method D1137-53(75), D1945-64(76), or D1946-77 (gaseous fuels) as applicable.

(These five methods are incorporated

(Hisse live methods are incorporated by reference—see \$60.17.)

(ii) GVC is the gross calorific value (k.J/kg, Btu/lb) of the fuel combusted determined by the ASTM test methods D2015-77 for solid fuels and D1826-77 for gaseous fuels as applicable. (These two methods are incorporated by reference—see §60.17.) (iii) For affected facilities which fire both fossil fuels and nonfossil fuels, the F or F<sub>c</sub> value shall be subject to the Administrator's approval.
 (6) For affected facilities firing com-

(6) For affected facilities firing combinations of fossil fuels or fossil fuels and wood residue, the *F* or *F*<sub>c</sub> factors determined by paragraphs (f)(4) or (f)(5) of this section shall be prorated in accordance with the applicable formula as follows:

$$F = \sum_{i=1}^{n} X_i F_i \text{ or } F_c = \sum_{i=1}^{n} X_i (F_c)_i$$

where:

X=the fraction of total heat input derived

X<sub>F</sub>the fraction of total heat input derived from each type of fuel (e.g. natural gas, bituminous coal, wood residue, etc.)
F<sub>f</sub> or (F<sub>d</sub>)=the applicable F or F<sub>c</sub> factor for each fuel type determined in accordance with paragraphs (f)(4) and (f)(5) of this section.

n=the number of fuels being burned in com-

- (g) Excess emission and monitoring system performance reports shall be submitted to the Administrator for every calendar quarter. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter. Each excess emission and MSP report shall include the information required in \$60.7(c). Periods of excess emissions and monitoring systems (MS) downtime that shall be reported are defined as follows:
- (MS) downtime that shall be reported are defined as follows:

  (1) Opacity. Excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 20 percent opacity, except that one six-minute average per hour of up to 27 percent opacity need not be reported.
- (i) For sources subject to the opacity standard of \$60.42(b)(1), excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 35 percent opacity, except that one six-minute average per hour of up to 42 percent opacity need not be reported.
- of emissions exceeds 35 percent opacity, except that one six-minute average per hour of up to 42 percent opacity need not be reported.

  (ii) For sources subject to the opacity standard of \$60.42(b)(2), excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 32 percent opacity, except that one six-minute average per hour of up to 39 percent opacity need not be reported.

- (2) Sulfur dioxide. Excess emissions for affected facilities are defined as:
- (i) Any three-hour period during which the average emissions (arithmetic average of three contiguous one-hour periods) of sulfur dioxide as measured by a continuous monitoring system exceed the applicable standard under §60.43.
- (3) Nitrogen oxides. Excess emissions for affected facilities using a continuous monitoring system for measuring nitrogen oxides are defined as any three-hour period during which the average emissions (arithmetic average of three contiguous one-hour periods) exceed the applicable standards under \$60.44.

[40 FR 46256, Oct. 6, 1975]

EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §60.45, see the List of CFR Sections Affected in the Finding Aids section of this volume.

## §60.46 Test methods and procedures.

- (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b). Acceptable alternative methods and procedures are given in paragraph (d) of this section.
- (b) The owner or operator shall determine compliance with the particulate matter,  $\mathrm{SO}_2$ , and  $\mathrm{NO}_x$  standards in §§60.42, 60.43, and 60.44 as follows:
- (1) The emission rate (E) of particulate matter,  $SO_2$ , or  $NO_x$  shall be computed for each run using the following equation:

 $E=C F_d (20.9)/(20.9-\% 0_2)$ 

- E = emission rate of pollutant, ng/J (lb/million Btu).
- C = concentration of pollutant, ng/dscm (1b/
- $%O_2$  = oxygen concentration, percent dry basis.
- $F_d$  = factor as determined from Method 19.
- (2) Method 5 shall be used to determine the particular matter concentration (C) at affected facilities without wet flue-gas-desulfurization (FGD) systems and Method 5B shall be used to determine the particulate matter concentration (C) after FGD systems.

- (i) The sampling time and sample volume for each run shall be at least 60 wontime for each run shail be at least of minutes and 0.85 dscm (30 dscf). The probe and filter holder heating systems in the sampling train may be set to provide a gas temperature no greater than 160±14 °C (320±25 °F).
- (ii) The emission rate correction factor, integrated or grab sampling and analysis procedure of Method 3B shall be used to determine the O<sub>2</sub> concentration  $(\%O_2)$ . The  $O_2$  sample shall be obtained simultaneously with, and at the same traverse points as, the particulate sample. If the grab sampling procedure is used, the O2 concentration for the run shall be the arithmetic mean of all the individual O<sub>2</sub> sample concentrations at each traverse point.
- (iii) If the particulate run has more than 12 traverse points, the  $O_2$  traverse points may be reduced to 12 provided that Method I is used to locate the 12 O2 traverse points.
- (3) Method 9 and the procedures in §60.11 shall be used to determine opac-
- (4) Method 6 shall be used to determine the SO<sub>2</sub> concentration.
- (i) The sampling site shall be the same as that selected for the particulate sample. The sampling location in the duct shall be at the centroid of the cross section or at a point no closer to the walls than 1 m (3.28 ft). The sampling time and sample volume for each sample run shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Two samples shall be taken during a 1-hour period, with each sample taken within a 30-minute interval.
- (ii) The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the  $O_2$  concentration (% $O_2$ ). The O<sub>2</sub> sample shall be taken simultaneously with, and at the same point as, the SO<sub>2</sub> sample. The SO<sub>2</sub> emission rate shall be computed for each pair of  $SO_2$  and  $O_2$  samples. The  $SO_2$  emission rate (E) for each run shall be the arithmetic mean of the results of the two pairs of
- (5) Method 7 shall be used to determine the  $NO_{\kappa}$  concentration.
- (i) The sampling site and location shall be the same as for the  $SO_2$  sample. Each run shall consist of four grab

- samples, with each sample taken at about 15-minute intervals
- about 13-minute intervals.

  (ii) For each NO<sub>x</sub> sample, the emission rate correction factor, grab sampling and analysis procedure of Method 3B shall be used to determine the O<sub>2</sub> concentration (%O<sub>2</sub>). The sample shall be taken simultaneously with, and at
- the same point as, the NO<sub>x</sub> sample.

  (iii) The NO<sub>x</sub> emission rate shall be computed for each pair of NO<sub>x</sub> and O<sub>2</sub> samples. The NO<sub>x</sub> emission rate (E) for each run shall be the arithmetic mean of the results of the four pairs of sam-
- (c) When combinations of fossil fuels or fossil fuel and wood residue are fired, the owner or operator (in order to compute the prorated standard as shown in §\$60.43(b) and 60.44(b)) shall determine the percentage (w. x. y. or z) of the total heat input derived from each type of fuel as follows:
- (1) The heat input rate of each fuel shall be determined by multiplying the gross calorific value of each fuel fired by the rate of each fuel burned.
- (2) ASTM Methods D 2015-77 (solid fuels), D 240-76 (liquid fuels), or D 1826-77 (gaseous fuels) (incorporated by reference—see §60.17) shall be used to determine the gross calorific values of the fuels. The method used to deter-mine the calorific value of wood residue must be approved by the Adminis-
- (3) Suitable methods shall be used to determine the rate of each fuel burned during each test period, and a material balance over the steam generating system shall be used to confirm the rate.
- (d) The owner or operator may use the following as alternatives to the reference methods and procedures in this section or in other sections as speci-
- (1) The emission rate (E) of particulate matter,  $SO_2$  and  $NO_x$  may be determined by using the  $F_c$  factor, provided that the following procedure is used:
- (i) The emission rate (E) shall be computed using the following equation: E=C F<sub>c</sub> (100/%CO<sub>2</sub>)

#### where:

E=emission rate of pollutant, ng/J (lb/million Btu).
C=concentration of pollutant, ng/dscm (lb/

%CO2=carbon dioxide concentration, percent

F<sub>c</sub>=factor as determined in appropriate sections of Method 19.

- (ii) If and only if the average  $F_{\rm c}$  factor in Method 19 is used to calculate E and either E is from 0.97 to 1.00 of the emission standard or the relative accuracy of a continuous emission monitoring system is from 17 to 20 percent, then three runs of Method 3B shall be used to determine the  $\rm O_2$  and  $\rm CO_2$  conused to determine the  $O_2$  and  $CO_2$  concentration according to the procedures in paragraph (b) (2)(ii), (4)(ii), or (5)(ii) of this section. Then if  $F_o$  (average of three runs), as calculated from the equation in Method 3B, is more than  $\pm 3$ percent than the average  $F_o$  value, as bettern than the average  $F_0$  value, as determined from the average values of  $F_d$  and  $F_c$  in Method 19, i.e.,  $F_{ou}$ =0.209 ( $F_{cd}/F_{cu}$ ), then the following procedure shall be followed:

  (A) When  $F_o$  is less than 0.97  $F_{ou}$ , then
- (A) When F<sub>ob</sub>, is less than 0.91 F<sub>ob</sub>, then E shall be increased by that proportion under 0.97 F<sub>ob</sub>, e.g., if F<sub>o</sub> is 0.95 F<sub>ob</sub>, E shall be increased by 2 percent. This re-calculated value shall be used to determine compliance with the emission
- (B) When  $F_o$  is less than 0.97  $F_{on}$  and when the average difference (d) between the continuous monitor minus the reference methods is negative, then the reference methods is negative, then E shall be increased by that proportion under  $0.97~E_{os}$ , e.g., if  $F_{o}$  is  $0.95~E_{os}$ , E shall be increased by 2 percent. This re-calculated value shall be used to determine compliance with the relative ac-
- mine compliance with the relative accuracy specification. (C) When  $F_o$  is greater than 1.03  $F_{ou}$  and when the average difference d is positive, then E shall be decreased by that proportion over 1.03  $F_{ou}$ , e.g., if  $F_o$  is 1.05  $F_{ou}$ , E shall be decreased by 2 percent. This recalculated value shall be used to determine compliance with the relative accuracy specification. (2) For Method 5 or 5B, Method 17 may be used at facilities with or without wet FGD systems if the stack gas temperature at the sampling location does not exceed an average tempera-
- does not exceed an average tempera-ture of 160 °C (320 °F). The procedures of sections 2.1 and 2.3 of Method 5B may be used with Method 17 only if it is used after wet FGD systems. Method 17 shall not be used after wet FGD systems if the effluent gas is saturated or laden with water droplets.

- (3) Particulate matter and SO2 may (3) Particulate matter and SO<sub>2</sub> may be determined simultaneously with the Method 5 train provided that the following changes are made:
  (i) The filter and impinger apparatus in sections 2.1.5 and 2.1.6 of Method 8 is
- used in place of the condenser (section 2.1.7) of Method 5.
- (ii) All applicable procedures in Method 8 for the determination of SO<sub>2</sub>
- (including moisture) are used:
  (i) For Method 6, Method 6C may be used. Method 6A may also be used whenever Methods 6 and 3B data are specified to determine the SO2 emisspecified to determine the SO<sub>2</sub> emission rate, under the conditions in paragraph (d) (1) of this section.

  (5) For Method 7, Method 7A, 7C, 7D, or 7E may be used. If Method 7C, 7D, or
- 7E is used, the sampling time for each run shall be at least 1 hour and the integrated sampling approach shall be used to determine the  $\mathrm{O}_2$  concentration (%O<sub>2</sub>) for the emission rate correction
- factor.
  (6) For Method 3, Method 3A or 3B
- may be used.
  (7) For Method 3B, Method 3A may be

[54 FR 6662, Feb. 14, 1989; 54 FR 21344, May 17, 1989, as amended at 55 FR 5212, Feb. 14, 1990]

## Subpart Da—Standards of Per-formance for Electric Utility Steam Generating Units for Which Construction is Commenced After September 18,

SOURCE: 44 FR 33613, June 11, 1979, unless otherwise noted.

## §60.40a Applicability and designation of affected facility.

- (a) The affected facility to which this subpart applies is each electric utility
- steam generating unit:
  (1) That is capable of combusting more than 73 megawatts (250 million Btu/hour) heat input of fossil fuel (either alone or in combination with any other fuel); and
- (2) For which construction or modification is commenced after September 18. 1978.
- (b) This subpart applies to electric utility combined cycle gas turbines that are capable of combusting more

## Appendix E.6