Data Needed to Run Most Models

- Fuel Loads
- Receptor Distances
- Ventilation Adjectives
- Visibility Threshold

- Fuel Loads
- Receptor Distances
- Ventilation Adjectives
- Visibility Threshold

Uncertainty in Fuel Loads

Non-Solution: Estimate load from fuel type

Fuel type is independent of fuel load - and PM

2005 proposed max. daily acres, grouped by reported fuel model. Top of scale truncated. Fuel types are ordered by total NFDRS load, except that mixed fuels varies.

- Fuel Loads
- Receptor Distances
- Ventilation Adjectives
- Visibility Threshold

Miles to Closest Receptor

□ 10(+) ■ 7-9.9 19% **Broadcast 5-6.9** Permits, 15% ■ 3-4.9 9% 2-2.9 15% ■ 1-1.9 8% 11% 0.5-0.9 9% 0-0.4 14%

2005

- Fuel Loads
- Receptor Distances
- Ventilation Adjectives
- Visibility Threshold

Ventilation Adjectives

<u>Strategy</u>: Sample spot weather forecasts.
Categorize by the day's best adjective.
For each category, extract typical number of hours in each adjective class.

Results are applicable more generally.

Spot Forecast Sample

- 7/1/04 6/30/05
- One forecast per day
- Selection within a day: Boulder, Pueblo, GJ
- Preference: rx fire, wildfire, then other.
- Random numbers then used if needed.

Spot Forecast Sample

- 300 days have any forecast.
- 34 'poor' days have limited analytic use.
- Completeness varies. For most graphs, 100 - 150 usable days.
- Represents burn days better than all days.

How often can I burn?

Portion of Days by Best Adjective, Day 2 'Day 2' is the second day of the forecast, less biased against poor. N=249 100% 75% excellent very good 50% good 🗖 fair 🗖 poor 25% 0% 3 2 4 5 6 7 8 9 10 12 11 1 month 'Poor' is 22% overall. 'Fair' is infrequent.

Portion of Days by Month's Dominant Activity, Day 2

Daylight Hours of Morning Poor

First Hour Better than Poor

When does 'poor' break?

Little pattern; Factor out sunrise & even seasonal effect fades. First Hour Better than Poor DAY 2

When does 'poor' break?

Day 2 Comparison

First Hour Better than Poor

How long from 'poor' to best dispersion?

Morning

	overall	fair	good	very good	excellent
mean	1.7	(0)	1.4	2.3	2.7
median	2	(0)	1	2	2 2
sample size	149	28	45	30	46

How long from 'poor' to best dispersion?

Morning – Day 2 Comparison

	overall	fair	good	very good	excellent	
mean	1.7/1.8	(0)	1.4/1.6	2.3/2.3	2.7/ <mark>2.3</mark>	
median	2/2	(0)	1/2	2/2	2/2	
sample size	149/136	28/16	45/44	30/38	46/38	
				very c	lose ma	tch

and later, how long from best dispersion to 'poor'?

Afternoon

	overall	fair	good	very good	excellent
mean	1.7	(0)	1.3	2.9	2.4
median	1	(0)	0	3 2	.5 2
sample size	95	20	23	17	35

How alike are morning and afternoon transitions?

Time Best Adjective Starts

Time Best Adjective Starts DAY 2

When does the day's best dispersion begin? Day 2 Comparison

similar

When does the day's best dispersion end?

End Time of Day's Best Adjective

How long does smoke disperse best?

Hours Duration of Best Adjective

	overall	fair	good	very good	excellent
mean	6.2	4.9	5.7	6.1	7.2
median	6	4	5	6	8
sample size	93	18	23	16	36

How long does smoke disperse best?

When does 'poor' resume?

relative to sunset

Which graph works better for same data?

Start of Evening Poor

Start of Evening 'Poor'

Start of Evening 'Poor'

Fair: 16:00 and 1(+) hr before sunset Others: 19:00 or later, after sunset

When does 'poor' resume?

Summary, a.k.a Gross Generalities

- Season does not drive diurnal timing.
- Season does drive frequency of adjectives.
- 'Fair' is different, while other adjectives resemble each other.

Summary, a.k.a Gross Generalities

	a.m. transition hrs	peak	p.m. transition hrs
fair	n/a	noon – 16:00	n/a
good	1	noon – 17:00	0
very good	2	noon – 18:00	2.5
excellent	2	noon – 20:00	2.5

How do the results apply?

- How representative is this one year?
- Season not key for models (phew!)
- How does late start of 'poor' apply to shutdown times?
- Does dissimilarity of fair compared to better adjectives matter?

- Fuel Loads
- Receptor Distances
- Ventilation Adjectives
- Visibility Threshold

Visibility

- Colorado's goal = 32 mile visibility.
- Surveys of disparate groups chose very consistent 'acceptable' air quality.
- Intent: a PM limit that protects visibility
- Model Input needed: PM concentration that equals visual extinction at 32 miles

Visibility -

Run SASEM Equations Backward

Visual Range = 3.9 / (.00001 + b * PM conc.) Rayleigh coefficient of clean air

b = backscatter ratio: 5.0 for Kosh 2.0 for P&V

Why different? "The particles... undoubtedly [?] had traveled long enough to grow due to... hygroscopic water."

32-mile Visibility Estimates

$$Kosh = \underline{13} \ \mu/m^{3}$$
APCD uses SASEM's Kosh only
for receptors closer than 20 miles.
$$P&V = \underline{33} \ \mu/m^{3}$$
Are these estimates
any more credible??
An unknown portion of the 33µ
may be hygroscopic water.